
What is tamperproofing?

Ensure that a program executes as intended, even in the

presence of an adversary who tries to disrupt, monitor, or

change the execution.

A tamperproofing algorithm
1 makes tampering difficult
2 detects when tampering has occured
3 responds to the attack

1/78

What are typical attacks and defenses?

An attacker typically modifies the program with the intent to force
it to chose a different execution path than the programmer
intended:

1 remove code from and/or insert new code into the
executable file prior to execution;

2 remove code from and/or insert new code into the
running program ;

3 affect the runtime behavior of the program through external
agents such as emulators, debuggers, or a hostile operating
system.

2/78

Algorithms

1 introspection , i.e. tamperproofed programs which monitor
their own code to detect modifications.

2 various kinds of response mechanisms .

3 oblivious hashing algorithms which examine the state of the
program for signs of tampering.

4 remote software authentication — determine that a program
running on a remote machine has not been tampered with
(WoW problem).

3/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

Definitions 4/78

CS

Input args

Env. variables

Registers

Static data

Stack

Heap

CHECK(){

return (Inv1)&&
(Inv2)&&

(Inv3);
}

OS

Dynamic libs

P

Dynamic linker

FS

Dynamic
linker

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

RESPOND

CHECK

PS
Emulator

HW

OS

NW

Debugger

Boot

loader

P’s code

Dynamic Libs

RESPOND(){

if (!CHECK())

report();

restore();

abort();
}

How does the adversary attack P?

1 Modify files:

P’s executable file
dynamic linker
dynamic libraries

2 Modify the operating system

3 Run P under emulation

4 Modify P while running under debugging

Definitions 6/78

What do we want?

Ensure P is healthy and the environment isn’t hostile:

1 Unadulterated hardware and operating system

2 Unmodified P’s code

3 Not running under emulation

4 Not being modified by a debugger

5 The right dynamic libraries have been loaded

Definitions 7/78

Checking for tampering — code checking

Check that P’s code hashes to a known value:
✞ ☎

if (hash(P’s code) != 0 xca7ca115)

return false;
✝ ✆

Definitions 8/78

Checking for tampering — result checking

Instead of checking that the code is correct, CHECK can test
that the result of a computation is correct.✞ ☎

qu i c kSo r t (A , n) ;
f o r (i =0; i <(n−1); i++)

i f (A[i]>A[i +1])
return f a l s e ;

✝ ✆

Definitions 9/78

Checking for tampering — environment checking

“Am I being run under emulation?’

“Is there a debugger attached to my process?”

“Is the operating system at the proper patch level?”

Definitions 10/78

Environment checking — Checking for debugging

✞ ☎

#i n c l u d e < s t d i o . h>
#i n c l u d e < s y s / p t r a c e . h>
i n t main () {

i f (p t r a c e (PTRACE TRACEME))
p r i n t f (” I ’m be i ng t r a c ed !\ n”) ;

}
✝ ✆

If you fail, you can assume you’ve been attached to a debugger:
✞ ☎

> gcc −g −o t r a c ed t r a c ed . c
> t r a c ed
> gdb t r a c ed
(gdb) run
I ’m be i ng t r a c ed !

✝ ✆

Definitions 11/78

Environment checking — Checking for debugging

✞ ☎
#include <stdio.h>

#include <stdint .h>

#include <signal .h>

#include <unistd .h>

#include <setjmp .h>

jmp_buf env ;

void handler (int signal) {

longjmp (env ,1);

}
✝ ✆

Definitions 12/78

✞ ☎
int main () {

signal (SIGFPE , handler);

uint32_t start ,stop;

int x = 0;

if (setjmp (env) == 0) {

asm volatile (

"cpuid\n"

"rdtsc\n" : "=a" (start)

);

x = x/x;

} else {

asm volatile (

"cpuid\n"

"rdtsc\n" : "=a" (stop)

);

uint32_t elapsed = stop - start;

if (elapsed >40000) printf ("Debugged !\n");

else printf ("Not debugged !\n");

}

}
✝ ✆

Environment checking — Checking for debugging

Here’s the output when first run normally and then under a
debugger:

✞ ☎
> gcc -o cycles cycles .c

> cycles

elapsed 31528: Not debugged !

> gdb cycles

(gdb) handle SIGFPE noprint nostop

(gdb) run

elapsed 79272: Debugged !
✝ ✆

Definitions 14/78

How do we respond to tampering?

1 Terminate the program.

2 Restore the program to its correct state, by patching the
tampered code.

3 Deliberately return incorrect results , maybe deteriorate
slowly over time.

4 Degrade the performance of the program.

5 Report the attack for example by “phoning home”.

6 Punish the attacker by destroying the program or objects in
its environment:

DisplayEater deletes your home directory.
Destroy the computer by repeatedly flashing the bootloader
flash memory.

Definitions 15/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

Introspection 16/78

Checking by introspection

Augment the program with functions that compute a hash
over a code region to compare to an expected value.

How can we be sure that the attacker won’t tamper with the
hash computation itself?

1 build up a network of checkers and responders, so that
checkers can check each other and responders can repair code
that has been tampered with.

2 hide the hash values so they won’t give away the location of
the checkers.

We’ll see a clever attack on all introspection algorithms!

. . . And , We’ll see a clever counter-attack!

Introspection 17/78

Inserting Guards

✞ ☎

.

s t a r t = start address ;
end = end address ;
h = 0 ;
whi le (s t a r t < end) {

h = h ⊕ ∗ s t a r t ;
s t a r t ++;

}
i f (h != expected value)

abo r t () ;
goto ∗ h ;

.
✝ ✆

Introspection 18/78

Attack model — Find the guards

1 Search for patterns in the static code, for example two code
segment addresses followed by a test:✞ ☎

s t a r t = 0 xbabebabe ;
end = 0 xca75ca75 ;
whi le (s t a r t < end) {

✝ ✆

2 Search for patterns in the execution, such as data reads into
the code.

Introspection 19/78

Attack model — Disable the guards

1 Replace the if-statement by if (0)...:✞ ☎

i f (0)
abo r t () ;

✝ ✆

2 Pre-compute the hash value and substitute it into the
response code: ✞ ☎

goto ∗expected value ;
✝ ✆

Introspection 20/78

Tamperproofing Algorithm: Chang & Atallah

Invented by two Purdue University researchers, Mike Atallah
and Hoi Chang:

Patented and with assistance from Purdue a start-up, Arxan,
was spun off.

Introspection 21/78

Tamperproofing Algorithm: Chang & Atallah

Checkers compute a hash over a region and compare to the
expected value.

Checkers check the code and check each other as well !

Build up a network of code regions: blocks of user code ,
checkers , and responders .

When a tampered function is found repair it !

Skype uses a similar technique.

Multiple checkers can check the same region.

Multiple responders can repair a tampered region.

Introspection 22/78

Original program

✞ ☎
int main (int argc , char * argv []) {

int user_key = 0 xca7ca115 ;

int media [] = {10 ,102};

play(user_key ,media ,2);

}

int getkey (int user_key) {

int player_key = 0 xbabeca75 ;

return user_key ^ player_key ;

}

int decrypt (int user_key , int media) {

int key = getkey (user_key);

return media ^ key;

}

float decode (int digital) { return (float)digital ;}

void play(int user_key , int media [], int len) {

int i;

for(i=0;i<len ;i++)

printf ("%f\n",decode (decrypt (user_key ,media [i])));

}
✝ ✆

Chang & Atallah

✞ ☎
#define getkeyHASH 0 xce1d400a

#define getkeySIZE 14

uint32 getkeyCOPY [] =

{0 x83e58955 ,0x72b820ec ,0 xc7080486 ,...};

#define decryptHASH 0 x3764e45c

#define decryptSIZE 16

uint32 decryptCOPY [] =

{0 x83e58955 ,0xaeb820ec ,0 xc7080486 ,...};

#define playHASH 0 x4f4205a5

#define playSIZE 29

uint32 playCOPY [] =

{0 x83e58955 ,0xedb828ec ,0 xc7080486 ,...};
✝ ✆

✞ ☎

int main (int argc , char * argv []) {

A();

}

int A() {

B();

}

int B() {

...

}
✝ ✆

✞ ☎

uint32 B_COPY []={0 x83e58955 ,0 xaeb820ec ,0 xc7080486 ,...};

int main (int argc , char * argv []) {

A();

}

int A() {

B_hash = hash(B);

if (B_hash != 0 x4f4205a5)

memcpy (B,B_COPY);

B();

}

int B() {

...

}
✝ ✆

Chang & Atallah

✞ ☎
uint32 A_COPY [] ={0 x83e58955 ,0x72b820ec ,0 xc7080486 ,...};

uint32 B_COPY []={0 x83e58955 ,0 xaeb820ec ,0 xc7080486 ,...};

int main (int argc , char * argv []) {

A_hash = hash(A);

if (A_hash != 0 x105AB23F)

memcpy (A,A_COPY);

A();

}

int A() {

B_hash = hash(B);

if (B_hash != 0 x4f4205a5)

memcpy (B,B_COPY);

B();

}

int B() {

...

}
✝ ✆

Chang & Atallah

✞ ☎
uint32 getkeyCOPY [] ={0 x83e58955 ,0 x72b820ec ,0 xc7080486 ,...};

uint32 decryptCOPY []={0 x83e58955 ,0 xaeb820ec ,0 xc7080486 ,...};

uint32 playCOPY [] ={0 x83e58955 ,0 xedb828ec ,0 xc7080486 ,...};

uint32 decryptVal ;

int main (int argc , char * argv []) {

uint32 playVal = hash((waddr t)play,29);

int user_key = 0 xca7ca115 ;

decryptVal = hash((waddr t)decrypt,16);

int media [] = {10 ,102};

if (playVal != 0 x4f4205a5)

memcpy((waddr t)play,playCOPY,29*sizeof(uint32));

play(user_key ,media ,2);

}

int getkey (int user_key) {

decryptVal = hash((waddr t)decrypt,16);

int player_key = 0 xbabeca75 ;

return user_key ^ player_key ;

}
✝ ✆

✞ ☎
int decrypt (int user_key , int media) {

uint32 getkeyVal = hash((waddr t)getkey,14);

if (getkeyVal != 0 xce1d400a)

memcpy((waddr t)getkey,getkeyCOPY,14*sizeof(uint32));

int key = getkey (user_key);

return media ^ key;

}

float decode (int digital) {

return (float)digital ;

}

void play(int user_key , int media [], int len) {

if (decryptVal != 0 x3764e45c)

memcpy((waddr t)decrypt,decryptCOPY,16*sizeof(uint32));

int i;

for(i=0;i<len ;i++)

printf ("%f\n",decode (decrypt (user_key ,media [i])));

}
✝ ✆

Algorithm Chang & Atallah: Checker network

decrypt

play

getkey

decode

main

r1 c1

c0

c2r2

r3

c3

code — code blocks

ci — checkers

ri — repairers

Introspection 30/78

Algorithm tpCA: Checker Network

Here’s the corresponding code, as it is laid out in memory:

getkey decrypt decode playmain

c2

r1

c3

c0
r3

r2

c1

blue represent checkers, pink repairers.

Introspection 31/78

Generating hash functions

Prevent collusive attacks ⇒ generate a large number of
different-looking hash functions.

Self-collusive attacks = the adversary scans through the
program for pieces of similar-looking code.

No need to be “cryptographically secure”.

No need to generate a uniform distribution of values.

Must be simple, fast, stealthy!

Introspection 32/78

hash1

✞ ☎
typedef unsigned int uint32 ;

typedef uint32 * addr_t ;

uint32 hash1 (addr_t addr ,int words) {

uint32 h = * addr;

int i;

for (i=1; i<words ; i++) {

addr ++;

h ^= * addr;

}

return h;

}
✝ ✆

Inline the function for better stealth.

Introspection 33/78

hash2

✞ ☎
uint32 hash2 (addr_t start ,addr_t end) {

uint32 h = * start;

while (1) {

start ++;

if (start >=end) return h;

h ^= * start;

}

}
✝ ✆

Will the compiler generate different code than for hash1???

Introspection 34/78

hash3

✞ ☎
int32 hash3 (addr_t start ,addr_t end ,int step) {

uint32 h = * start;

while (1) {

start += step;

if (start >=end) return h;

h ^= * start;

}

}
✝ ✆

Step through the code region in more or less detail ⇒ balance
performance and accuracy.

Introspection 35/78

hash4

✞
uint32 hash4 (addr_t start ,addr_t end ,uint32 rnd) {

addr_t t = (addr_t)((uint32)start + (uint32)end + rnd);

uint32 h = 0;

do {

h += *((addr_t)(-(uint32)end -(uint32)rnd +(uint32)t));

t++;

} while (t < (addr_t)((uint32)end+

(uint32)end +(uint32)rnd));

return h;

}
✝

Scan backwards.

Obfuscate to prevent pattern-matching attacks: add (and
then subtract out) a random value (rnd).

Introspection 36/78

hash5

✞ ☎
uint32 hash5 (addr_t start , addr_t end , uint32 C) {

uint32 h = 0;

while (start < end) {

h = C*(* start + h);

start ++;

}

return h;

}
✝ ✆

Generate 2,916,864 variants, each less than 50 bytes of x86,
by reordering basic blocks, inverting conditional branches,
replacing multiplication instructions by combinations of shifts,
adds, and address computations, permuting instructions
within blocks, permuting register assignments, and replacing
instructions with equivalents.

Introspection 37/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

The Skype obfuscated protocol 38/78

The Skype obfuscated protocol

Voice-over-IP service where users are charged for
computer-to-phone and phone-to-computer calls.

The Skype client is heavily tamperproofed and obfuscated.

2005: Skype was bought by eBay for $2.6 billion.

2006: Hacked by two researchers at the EADS Corporate
Research Center in France.

The Skype obfuscated protocol 39/78

The Skype obfuscated protocol

The client binary contains:
1 hardcoded RSA keys
2 the IP address and port number of a known server

Break the protection and build your own VoIP network!

The Skype obfuscated protocol 40/78

Skype protection: Stage 1

4. decrypt
PC

5. load hidden
dll table

6. ...

dll table dll table dll table

1. initialize
2. load dll:s

3. erase
4. decrypt

PC

ENCRYPTED

3. erase
4. decrypt

5. load hidden
dll table

6. ...
PC

3. erase

ERASED

key

ERASED

hidden dll table

key key

pink: cleartext code, loads dlls.

blue: erase pink code, decrypts green code.

green: loads hidden dlls (yellow).

Erasing and hiding dlls: hard to recreate binary.

The Skype obfuscated protocol 41/78

Skype protection: Stage 2

Check for debuggers:
1 Signatures of known debuggers
2 Timing tests

The Skype obfuscated protocol 42/78

Skype protection: Stage 3

Checker network:

...
C36

C37

C2 C38

C1

C72

Hash function computes the address of the next location to be
executed!

Hash functions are obfuscated, but not enough — attacked by
pattern-matching.

The Skype obfuscated protocol 43/78

✞ ☎
uint32 hash7 () {

addr_t addr;

addr = (addr_t)((uint32)addr ^(uint32)addr);

addr = (addr_t)((uint32)addr + 0 x688E5C);

uint32 hash = 0 x320E83 ^ 0 x1C4C4 ;

int bound = hash + 0 xFFCC5AFD ;

do {

uint32 data = *((addr_t)((uint32)addr + 0 x10));

goto b1; asm volatile (".byte 0x19");

b1: hash = hash ⊕ data;

addr -= 1; bound --;

} while (bound !=0);

goto b2;

asm volatile (".byte 0 x73");

b2:

goto b3;

asm volatile (".word 0 xC8528417 ,0 xD8FBBD1 ,0 xA36CFB2F ");

asm volatile (".word 0 xE8D6E4B7 ,0 xC0B8797A ");

asm volatile (".byte 0x61 ,0xBD ");

b3:

hash -=0 x4C49F346 ; return hash;

}
✝ ✆

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

Attacking self-hashing algorithms 45/78

Algorithm reWOS: Attacking self-hashing algorithms

How to attack introspection algorithms?
1 Analyze the code to locate the checkers, or
2 Analyze the code to locate the responders, then
3 Remove or disable them without destroying the rest of the

program.

Attack can just as well be external to the program!

Attacking self-hashing algorithms 46/78

Algorithm reWOS: Attacking self-hashing algorithms

Processors treat code and data differently.

TLBs (Translation Lookaside Buffers) and caches are split in
separate parts for code and data.

In the hash-based algorithms code is accessed
1 as code (when it’s being executed) and
2 as data (when it’s being hashed).

⇒ sometimes a function will be read into the I-cache and
sometimes into the D-cache.

Attacking self-hashing algorithms 47/78

Algorithm reWOS: Attacking self-hashing algorithms

Attack: modify the OS such that
1 redirect reads of the code to the original, unmodified program

(hash values will be computed as expected!)
2 redirect execution of the code to the modified program (the

modified code will get executed!)

Attacking self-hashing algorithms 48/78

Algorithm reWOS: Attacking self-hashing algorithms

Attack(P ,K):

1 Copy program P to Porig.

2 Modify P as desired to a hacked version P ′.

3 Modify the operating system kernel K such that data reads are

directed to Porig, instruction reads to P ′.

Attacking self-hashing algorithms 49/78

Algorithm reWOS: Attacking self-hashing algorithms

Typical memory management system:

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit

On a TLB miss walk the page tables (slow), and update the
TLB with the new virtual-to-physical address mapping.

On the UltraSparc, the hardware gives the OS control on a
TLB miss by throwing one of two exceptions depending on
whether the miss was caused by a data or an instruction fetch

Attacking self-hashing algorithms 50/78

Algorithm reWOS: Attacking self-hashing algorithms

1 Copy P to Porig and modify P however you like.
2 Arrange the physical memory such that frame i comes from

the hacked P and frame i + 1 is the corresponding original
frame from Porig.

3 Modify the kernel: if a page table lookup yields a v → p

virtual-to-physical address mapping, I-TLB is updated with
v → p and D-TLB with v → p + 1.

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

Attacking self-hashing algorithms 51/78

Algorithm reWOS: Attacking self-hashing algorithms

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

1 The attacker has modified the program to bypass a
license-expired check.

2 The original program pages are in blue.

3 The modified program pages are in pink.

Attacking self-hashing algorithms 52/78

Algorithm reWOS: Attacking self-hashing algorithms

05 0203
Virtual Address

00

Page Tables

I−TLB
Instruction

fetch

Data
fetch

D−TLB

miss
TLB

1

2

3

4

5

6

Physical
frames

abort();

if (expired)
abort();

if (false)
2 → 3

2 → 4

1 The program tries to read its own code in order to execute it
⇒ the processor throws an I-TLB-miss exception, the OS
updates the I-TLB to refer to the modified page.

2 The program tries to read its own code in order hash the
processor throws a D-TLB-miss exception, and the OS
updates the D-TLB to refer to the original, unmodified, page.

Attacking self-hashing algorithms 53/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

State inspection 54/78

What’s wrong with introspection algorithms?

Introspection algorithms
1 read their own code segment (unusual)!
2 only check the validity of the code itself (not runtime data,

function return values, . . .).

Oblivious algorithms
1 detect tampering from the side-effects the code produces
2 check the correctess of data and control-flow

Oblivious ⇒ the adversary should be unaware that his code is
being checked.

State inspection 55/78

Oblivious hashing

More stealthy than introspection techniques.

We don’t read our own code!

An advanced form of assertion checking :
✞ ☎

ASSERT x < 100;
ASSERT y != nu l l ;

✝ ✆

Works on Java as well as binary code.

State inspection 56/78

Challenging functions

Adding assertion checks automatically is hard!

How can we know what values variables should have???

Instead, call functions with challenge inputs:✞ ☎

i n t c h a l l e n g e = 5 ;
i n t expec t ed = 120;
i n t r e s u l t = f a c t o r i a l (c h a l l e n g e) ;
i f (r e s u l t != expec t ed)

abo r t () ;
✝ ✆

State inspection 57/78

Challenging functions

Be careful not to generate suspicious-looking hash values or
challenge data:✞ ☎

i f (f a c t o r i a l (17) != 355687428096000)
abo r t () ;

✝ ✆

You can hide the hash value by making copies of every
function:✞ ☎

i n t c h a l l e n g e = 17;
i f (f a c t o r i a l o r i g (c h a l l e n g e) !=

f a c t o r i a l c o p y (c h a l l e n g e))
abo r t () ;

✝ ✆

State inspection 58/78

Algorithm tpJJV: Oblivious hashing

IDEA: overlap basic blocks of x86 instructions.

When one block executes it also computes a hash over the
second block!

The hash is computed without reading the code!

Invulnerable to memory splitting attacks!

State inspection 59/78

✞ ☎

B0 :

shll 2,%eax

incl %eax

ret
✝ ✆

✞ ☎

B1 :

decl %eax

shrl 3,%eax

ret
✝ ✆

Merge the blocks by interleaving the instructions, inserting jumps
to maintain semantics:

✞ ☎
B0 :

shll 2,%eax

jmp I1

B1 :

decl %eax

jmp I2

I1 :

incl %eax

jmp I3

I2 :

shrl 3,%eax

I3 :
ret

✝ ✆

The merged block has two entry points, B0 and B1.

Want the two blocks also to share instruction bytes.

Replace the jmp with xorl that takes a 4-byte literal
argument:

✞ ☎
B0 :

shll 2,%eax

xorl %ecx ,next 4 bytes // used to be jmp I1

B1 :

decl %eax

jmp I2

nop

incl %eax

...
✝ ✆

The xorl instruction has, embedded in its immediate
operand, the four bytes from decl;jmp;nop!

B0

↓

shll $2,%eax incl %eax ret
z }| { z}|{ z}|{

C1 E0 02 40 C3

0 1 2 3 4

B1

↓

decl %eax shrl $3,%eax ret
z}|{ z }| { z}|{

48 C1 E8 03 C3

0 1 2 3 4

B0

↓

shll $2,%eax xorl $90E98148,%ecx incl %eax
z }| { z }| { z}|{

C1 E0 02 81 F1 48 81 E9 90 40 81 C1

0 1 2 3 4 5 6 7 8 9 10 11

|{z} | {z }

decl %eax subl $C1814090,%ecx

↑

B1

addl $9003E8C1,%ecx ret
z }| { z}|{

81 C1 C1 E8 03 90 C3

10 11 12 13 14 15 16

| {z } |{z} |{z}

shrl $3,%eax nop ret

Algorithm tpJJV: Oblivious hashing

Executing one block means also computing a hash over the
other block into register %ecx!

You can check the hash as usual.

Clever use of the x86’s architectural (mis-)features!

Overhead: up to 3x slowdown.

State inspection 64/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

Response Mechanisms 65/78

Algorithm tpTCJ: Response Mechanisms

end
failRESPOND()CHECK()program tamper

start
program

CHECK checks for tampering,

Later RESPOND takes action,

Later still, the program actually fails

Response Mechanisms 66/78

Algorithm tpTCJ: Response Mechanisms

✞ ☎
boolean tampered = false ;

int global = 10;

. . .

if (hash(. . .)!=0xb1acca75) tampered = true;

. . .

if (tampered) global = 0;

. . .

printf("%i",10/global);
✝ ✆

RESPOND corrupts program state so that the actual failure
follows much later

Response Mechanisms 67/78

Algorithm tpTCJ: Response Mechanisms

✞ ☎
#include <time.h>

int global = 10;

. . .

if (time(0) % 2 == 0)

printf("%i",10/global);

. . .

if (getpid() % 2 == 0)

x = 5/global;

. . .

x = 3/global;
✝ ✆

Introduce a number of failure sites and probabilistically choose
between them.

Every time the attacker runs the hacked program it is likely to
fail in one of the two green spots.

Response Mechanisms 68/78

Algorithm tpTCJ: Response Mechanisms

spatial separation: There should be as little static and dynamic
connection between the RESPOND site and the failure
site as possible.

temporal separation: A significant length of time should pass
between the execution of RESPOND and the eventual
failure.

stealth: The test, response, and failure code you insert in the
program should be stealthy

predictability: Once the tamper response has been invoked, the
program should eventually fail.

Response Mechanisms 69/78

Algorithm tpTCJ: Response Mechanisms

Think about legal implications of your tamper response
mechanism!

Don’t deliberately destroy data. . .

What if tamper-response was issued erroneously? (“I forgot
my password, and after three tries the program destroyed my
home directory!”)

Watch out for unintended consequences. (the program
crashes with a file open. . .)

Response Mechanisms 70/78

Algorithm tpTCJ: Response Mechanisms

RESPOND to set a global pointer variable to NULL, causing the
program to crash when the pointer is later dereferenced.

If the program doesn’t have enough pointer variables tpTCJ
creates new ones by adding a layer of indirection to
non-pointer variables.

Assumes that there are enough global variables to choose
from.

Response Mechanisms 71/78

Algorithm tpTCJ: Problem

✞ ☎
int tampered =0;

int v;

void f() {

v = 10;

}

void g() {

f();

}

void h() {

}

int main () {

if (. . .)

tampered =1;

h();

g();

}
✝ ✆

✞ ☎
int tampered =0;

int v;

int *p v = &v;

void f() {

*p v = 10;

}

void g() {

f();

}

void h() {

}

int main () {

if (. . .)

tampered =1;

h();

g();

}
✝ ✆

✞ ☎
int tampered =0;

int v;

int * p_v = &v;

void f() {

*p_v = 10;

}

void g() {

f();

}

void h() {

if (tampered)

p v = NULL;

}

int main () {

if (. . .)

tampered =1;

h();

g();

}
✝ ✆

Algorithm tpTCJ: Example

1 Create a global pointer variable p v.

2 To make the program crash you should set p v to NULL. But
where?

3 You want to avoid g and main since they will be on the call
stack when f throws the pointer-reference-to-nil exception.
(Check the stacktrace.)

4 Insert the failure-inducing code in h which is “many” calls
away and not in the same call-chain as f.

Response Mechanisms 74/78

Outline

1 Definitions
2 Introspection

Checker Network
3 The Skype obfuscated protocol
4 Attacking self-hashing algorithms
5 State inspection

Overlapping instructions
6 Response Mechanisms
7 Discussion

Discussion 75/78

Trustworthiness

Tamperproofing is about trustworthiness :

Can I trust my program when it’s running on an untrusted site?

For us to trust P , the adversary

cannot add/remove/change P ’s code!
cannot modify P ’s environment!

Essential for DRM, network gaming,. . .

Discussion 76/78

Basic operations

Check P ’s environment:

Am I running under a debugger?
Am I running under emulation?
Has the OS been hacked?

Check P ’s code:

Have the executable bits been changed?

Check P ’s dynamic data:

Is P in a legal executable state?

Discussion 77/78

In practice. . .

Use a combination of operations!

Check the environment
Check the code
Check the state

You must check the checking code!

Simple attack: remove the checkers!

The response must be stealthy!

Simple attack: trace back from failure!

The detection must be stealthy!

Simple attack: detect reads of executable pages!

Discussion 78/78

	Definitions
	Introspection
	Checker Network

	The Skype obfuscated protocol
	Attacking self-hashing algorithms
	State inspection
	Overlapping instructions

	Response Mechanisms
	Discussion

