
CSc 466/566

Computer Security

2 : Introduction — Mechanisms
Version: 2012/01/30 15:51:24

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/80

Outline

1 Security Principles
2 Access Control Models
3 Cryptographic Concepts

Symmetric Encryption Protocol
Public Key Protocol
Digital Signatures
Cryptographic Hash Functions
Digital Certificates
In-Class Exercises

4 Summary

Security Principles 2/80

Security Principles

How do we build secure computing systems? There are 10
well-known principles:

1 Economy of mechanisms.

2 Fail-safe defaults.

3 Complete mediation.

4 Open design.

5 Separation of privilege.

6 Least privilege.

7 Least common mechanism.

8 Psychological acceptability.

9 Work factor.

10 Compromise recording.

Security Principles 3/80

Security Principles: Economy of mechanisms

Definition (Economy of mechanisms)

Keep the design and implementation as simple and small as
possible.

Good engineering principle in general!

Necessary in order to effectively inspect and analyze software
for security vulnerabilities, such as reading code line-by-line.

Security Principles 4/80

collberg@gmail.com

Security Principles: Fail-safe defaults

Definition (Fail-safe defaults)

The default security configuration should be conservative.

The default situation for a computer system should be to not
have access.

The protection scheme should list those conditions under
which access is permitted .

Examples:
1 When adding a new user to the system, he should have

minimal access to files and other resources.
2 By default, when downloading code from the web, it should

not be directly executable.

Security Principles 5/80

Security Principles: Complete mediation

Definition (Complete mediation)

Every time a resource is accessed, the access should be checked
against a protection scheme.

Don’t cache the results of previous security checks!

Examples:
1 Your bank logs you out and asks you to log back in ever 15

minutes.
2 Unix’s sudo command allows you to issue several commands

after an initial authorization, but after a period of time, you
have to re-enter your superuser password.

3 A program checks permissions on a file only the first time it
opens it — what happens if the permissions change later while
the program is still running?

Security Principles 6/80

Security Principles: Open design

Definition (Open design)

The security architecture and design of a system should be made
publically available.

Only cryptographic keys should be kept secret!

Open design: Allows multiple parties to examine a system for
vulnerabilities.

Open implementation (open source): Anyone can find and fix
bugs.

Opposite: security-through-obscurity .

Examples:
1 Cryptographic algorithms which are safe only if kept secret —

once broken, hard to update! Keys are easier to replace if
compromised.

Security Principles 7/80

Security Principles: Open design. . .

Six design principles for military ciphers (Auguste Kerckhoffs, La
Cryptographie Militaire, 1883):

1 The system must be practically, if not mathematically,
indecipherable;

2 It must not be required to be secret , and it must be able to
fall into the hands of the enemy without inconvenience;

3 Its key must be communicable and retainable without the help
of written notes, and changeable or modifiable at the will of
the correspondents;

4 It must be applicable to telegraphic correspondence;
5 It must be portable, and its usage and function must not

require the concourse of several people;
6 Finally, it is necessary, given the circumstances that command

its application, that the system be easy to use, requiring
neither mental strain nor the knowledge of a long series of
rules to observe.

Security Principles 8/80

Security Principles: Separation of privilege

Definition (Separation of privilege)

Multiple conditions should be needed to access a resource.

Also: components of a system should be separated so that a
security breach of one won’t affect another.

Examples:
1 Two keys to open a safe-deposit box.
2 Two commands to launch an intercontinental ballistic missile.

Security Principles 9/80

Security Principles: Least privilege

Definition (Least privilege)

Users and processes should operate with no more privileges than
they need to function properly.

Limits the damage if an application or account is
compromised.

Examples:
1 The military’s need-to-know principle.
2 Code injected into a web browser can do more damage if the

browser runs as superuser — the browser should instead run
with minimal privileges.

Security Principles 10/80

Security Principles: Least common mechanism

Definition (Least common mechanism)

Multiple users shouldn’t share the same mechanism to access a
resource.

Shared mechanisms mean channels that could transmit
information, leading to unwanted information paths between
users.

Examples:
1 If two users accesses the same file, they should do so using

different channels.

Security Principles 11/80

Security Principles: Psychological acceptability

Definition (Psychological acceptability)

User interfaces should be intuitive and security settings should be
set to what a user might reasonably expect.

Examples:
1 Why don’t we always encrypt all email? Apparently it is

difficult to design intuitive interfaces.

Security Principles 12/80

Security Principles: Work factor

Definition (Work factor)

The cost of circumventing a security mechanism should be
compared to the resources available to the attacker.

Examples:
1 Protecting student grades: most students probably aren’t very

accomplished hackers.
2 Protecting military secrets: the adversary is a nation state with

unlimited resources.
3 Brute force password cracking: now feasible with more

powerful computing systems.

Hard to determine work factor if the attacker can get help
from automating the attack.

Security Principles 13/80

Security Principles: Compromise recording

Definition (Compromise recording)

Logging a security breach may be more effective than protecting
against it.

Assumes the attacker can’t erase logs to hide their breach.

Examples:
1 Surveillance cameras to detect but not prevent crime.
2 Access logs of security sensitive files.

Security Principles 14/80

In-Class Exercise I — Goodrich & Tamassia R-1.16

Give an example how someone might use
security-by-obscurity in the design of a system and what the
consequences could be.

Security Principles 15/80

Outline

1 Security Principles
2 Access Control Models
3 Cryptographic Concepts

Symmetric Encryption Protocol
Public Key Protocol
Digital Signatures
Cryptographic Hash Functions
Digital Certificates
In-Class Exercises

4 Summary

Access Control Models 16/80

Access Control Models

We should determine who has the right to access to a piece of
information.

If we can control access to information, we can prevent
attacks against confidentiality , anonymity , and integrity .

Someone (eg. system administrators) should restrict access to
those who should have access: they should apply the
principle of least privilege .

Access Control Models 17/80

Access Control Matrices

Definition (subject)

User, group, or system that can perform actions.

Definition (object)

File, directory, document, device, resource for which we want to
define access rights.

An access control matrix is a table defining permissions: rows
are subjects , columns objects .

Each table cell holds the rights of the subject to access the
object.

Rights: read, write, copy, execute, delete, annotate,

Access Control Models 18/80

Access Control Matrices: Example

/etc/passwd /usr/bob/ /admin/

root read, write read, write, execute read, write, execute

alice read

bob read read, write, execute

backup read read, execute read, execute

Advantages : fast access

Disadvantages : size

Access Control Models 19/80

Access Control Lists (ACLs)

Is object-centered : for every object o list (only) the subjects s
that have access to o, and s’ access rights.

/etc/passwd /usr/bob/ /admin/

root: r,w
alice: r
bob: r

backup: r

root: r,w,x
bob: r,w,x
backup: r

root: r,w,x
backup: r

Advantages : size, o’s ACL can be stored directly as o’s
metadata

Disadvantages : can’t enumerate a subject’s rights (for
example when a subject is removed from the system).

Access Control Models 20/80

Capabilities

Is subject-centered : for every subject s list (only) the objects
o that s has non-empty access to, and o’s access rights.

root alice bob

/etc/passwd: r,w,x

/usr/bob/: r,w,x

/admin/: r,w,x

/etc/passwd: r
/etc/passwd: r

/usr/bob/: r,w,x

backup

/etc/passwd: r

/usr/bob/: r,x

Access Control Models 21/80

Capabilities. . .

Advantages :
1 size,
2 easy to enumerate a subject’s rights (for example when a

subject is removed from the system),
3 easy to check of subject s can access object o.

Disadvantages : can’t enumerate who has access to an object
o.

Access Control Models 22/80

Role-Based Access Control (RBAC)

In Role-Based Access Control we replace subjects by roles in
any of the access control data structures.

Each role gets the appropriate access rights.

Subjects are assigned to roles

Examples:
1 CS department roles: faculty, student, sysadmins, department

head, TA, . . .
2 CS department subjects: bob={student,TA}, alice={faculty},

wendy={faculty,department head}

A subject’s access rights is the union of the rights of its
various roles.

Access Control Models 23/80

Role Hierarchies

In a role hierarchy access rights propagate up the hierarchy: a
node n inherits all the rights of it’s children.

Examples:
1 CS department: The bottom role is member ; above member

is faculty and student who both inherit the rights of member;
above faculty is department head who inherits the rights of
faculty.

Advantages : fewer rules since there are fewer roles than
subjects.

Disadvantages : not implemented in current operating
systems.

Access Control Models 24/80

In-Class Exercise

Users: Alice, Bob, Cyndy.

Alice owns alicerc, Bob and Cyndy can read it.

Bob owns bobrc, Cyndy can read and write it, Alice can read
it.

Cyndy owns cyndyrc, only she can read and write it.

1 Create the access control matrix.

2 Cindy lets Alice read cyndyrc. Alice no longer allows Bob to
read alicerc. Show the new matrix.

Source: Bishop, Introduction to Computer Security.

Access Control Models 25/80

Outline

1 Security Principles
2 Access Control Models
3 Cryptographic Concepts

Symmetric Encryption Protocol
Public Key Protocol
Digital Signatures
Cryptographic Hash Functions
Digital Certificates
In-Class Exercises

4 Summary

Cryptographic Concepts 26/80

Cryptographic Concepts

Cryptography underlies many of the technical means for
enforcing security policies.

Traditionally, encryption is modeled as two parties Alice and
Bob who are communicating over an insecure link. An
eavesdropper, Eve , is listening in to their communication.

Cryptographic Concepts 27/80

Terminology: Encryption

Definition (encryption)

Disguising a message to hide its contents.

Definition (plaintext)

A message we want to transfer securely (aka. cleartext).

Definition (ciphertext)

The encrypted form of the plaintext message.

Definition (encipher)

Converting the plaintext to the ciphertext. Also encrypt .

Definition (decipher)

Converting the ciphertext to the plaintext. Also decrypt .

Cryptographic Concepts 28/80

Terminology: Encoding

Definition (encode)

Converting the plaintext into a standard alphabet.

Definition (decode)

Converting the encoded message back into the plaintext.

Example: uuencode converts a binary file into ASCII text.
✞ ☎

> echo h e l l o | uuencode −m −o o u t f i l e r e m o t e f i l e
> ca t o u t f i l e
begin−base64 644 r e m o t e f i l e
aGVsbG8K
====
> uudecode −p o u t f i l e
h e l l o

✝ ✆

Cryptographic Concepts 29/80

Terminology: Ciphers

Definition (cipher)

A map from the space of the plaintext to the space of the
ciphertext. Also cypher .

Definition (stream cipher)

A cipher that enciphers the plaintext one character at a time.

Definition (block cipher)

A cipher that enciphers the plaintext in chunks of characters.

A cipher is thus an algorithm for encryption/encipherment.

Examples: RSA, DES, . . .

Cryptographic Concepts 30/80

Mathematical Notation

Common abbreviations:

P : The plaintext.
M: The plaintext (message).
C : The ciphertext.
E : The encryption function.
D: The decryption function.

The encryption/decryption process:

E (M) = C

D(C) = M

D(E (M)) = M

It should be safe to transmit C over an insecure channel since
the ciphers are chosen such that it is infeasible for anyone but
Alice and Bob to find M given C .

Cryptographic Concepts 31/80

Keys

Ciphers need some sort of secret information known only to
Alice and Bob. This is the key .

Mathematical notation:

K : The key, used by the encryption and decryption
functions.

EK (M) = C

DK (C) = M

DK (EK (M)) = M

Definition (keyspace)

The range of possible values of the key.

Cryptographic Concepts 32/80

Symmetric-key vs. Public-key Algorithms

Definition (Symmetric-key Algorithms)

Symmetric-key cryptographic algorithms use identical keys for
encryption and decryption.

Definition (Public-key Algorithms)

Public-key cryptographic algorithms use different keys for
encryption and decryption.

EK (M) = C

DK (C) = M

DK (EK (M)) = M

EK1
(M) = C

DK2
(C) = M

DK2
(EK1

(M)) = M

Cryptographic Concepts 33/80

Cryptosystems

To be able to communicate using ciphers we need
1 Set of possible plaintexts
2 Set of possible ciphertexts
3 Set of encryption keys
4 Set of decryption keys
5 Correspondence between encryption and decryption keys
6 Encryption algorithm
7 Decryption algorithm

This is known as a cryptosystem .

Cryptographic Concepts 34/80

Monoalphabetic Substitution Ciphers: Caesar Cipher

Add 3 to the ASCII value of each character, mod 26:

A→ D,B → E ,X → A,

Cryptosystem:

Set of possible plaintexts and ciphertexts: Latin alphabet
Set of encryption keys = {3}
Set of decryption keys = {-3}
Decryption key = - Encryption key
Encryption algorithm = Decryption algorithm =
(x + key) mod 26.

Cryptographic Concepts 35/80

Monoalphabetic Substitution Ciphers: ROT13

Unix utility used on Usenet. Adds 13 mod 26 to each letter.

P = ROT13(ROT13(P)).

✞ ☎

> echo ” h e l l o ” | t r ’A−Za−z ’ ’N−ZA−Mn−za−m’
uryyb
> echo ” uryyb ” | t r ’A−Za−z ’ ’N−ZA−Mn−za−m’
h e l l o

✝ ✆

Cryptographic Concepts 36/80

Symmetric-key Encryption Protocol

Assuming that we have access to a symmetric-key
cryptosystem (DES is an example), how do we use it?

We have to describe a protocol that shows how each party
uses the cryptosystem to solve a communication/security
problem.

1 Alice and Bob agree on a cryptosystem.

2 Alice and Bob agree on a key.

3 Alice encrypts her plaintext, getting a ciphertext.

4 Alice sends the ciphertext to Bob.

5 Bob decrypts the message using the same cryptosystem and
key.

Cryptographic Concepts 37/80

Symmetric Encryption Protocol. . .

Alice Bob

plaintext encrypt ciphertext decrypt plaintext

K
Eve

K

Cryptographic Concepts 38/80

Symmetric Encryption: Key Distribution

Alice Bob

Carol Dave

Advantages : Ciphers (DES,AES,. . .) are fast; keys are small.

Disadvantages : n n−1
2 keys to communicate between n parties.

Cryptographic Concepts 39/80

Symmetric Encryption Protocol – Attacks

What can an attacker do?

If Eve listens in on the communication between Alice and Bob
she will get a sequence of ciphertext messages. She can use
these to launch a ciphertext-only attack .

Eve could also try to listen in to the first two parts of the
protocol, where Alice and Bob decide on a key and
cryptosystem to use.

Eve could also sit in the middle, intercept Alice’s messages,
and substitute her own messages encrypted with the key she
has discovered.

Cryptographic Concepts 40/80

Public Key Protocol

Key-management is the main problem with symmetric
algorithms – Bob and Alice have to somehow agree on a key
to use.

In public key cryptosystems there are two keys, a public one
used for encryption and and private one for decryption.

1 Alice and Bob agree on a public key cryptosystem.

2 Bob sends Alice his public key, or Alice gets it from a public
database.

3 Alice encrypts her plaintext using Bob’s public key and sends
it to Bob.

4 Bob decrypts the message using his private key.

Cryptographic Concepts 41/80

Notation

Bob’s public key: PB

Bob’s secret key: SB

EPB
(M) = C

DSB
(C) = M

DSB
(EPB

(M)) = M

Cryptographic Concepts 42/80

Public Key Encryption Protocol. . .

Alice Bob

plaintext encrypt ciphertext decrypt plaintext

PB

Eve
SB

Cryptographic Concepts 43/80

Public Key Encryption: Key Distribution

Alice Bob

Carol Dave

SA,PA SB ,PB

SC ,PC SD ,PD

PA,PB

PA,PC PA,PD PB ,PD
PB ,PC

PC ,PD

Advantages : n key pairs to communicate between n parties.

Disadvantages : Ciphers (RSA,. . .) are slow; keys are large

Cryptographic Concepts 44/80

A Hybrid Protocol

In practice, public key cryptosystems are not used to encrypt
messages – they are simply too slow.

Instead, public key cryptosystems are used to encrypt
keys for symmetric cryptosystems . These are called
session keys , and are discarded once the communication
session is over.

1 Bob sends Alice his public key.

2 Alice generates a session key K , encrypts it with Bob’s public
key, and sends it to Bob.

3 Bob decrypts the message using his private key to get the
session key K .

4 Both Alice and Bob communicate by encrypting their
messages using K .

Cryptographic Concepts 45/80

Hybrid Encryption Protocol. . .

Alice Bob

K encrypt EPB
(K) decrypt K

PB SB

M encrypt EK (M) decrypt M

K K

Cryptographic Concepts 46/80

Digital Signatures

Often, Bob will want to make sure that the document he got
from Alice in fact originated with her.

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

1 Bob encrypts his document with his private key , thereby
signing it.

2 Bob sends the signed document to Alice.

3 Alice decrypts the document using Bob’s public key , thereby
verifying his signature.

Cryptographic Concepts 47/80

Digital Signatures. . .

This works because for many public key ciphers

DSB
(EPB

(M)) = M

EPB
(DSB

(M)) = M

i.e. we can reverse the encryption/decryption operations.

That is, Bob can apply the decryption function to a message
with his private key SB , yielding the signature sig:

sig ← DSB
(M)

Then, anyone else can apply the encryption function to sig to
get the message back. Only Bob (who has his secret key)
could have generated the signature:

EPB
(sig) = M

Cryptographic Concepts 48/80

Digital Signatures. . .

Bob Alice

M sig ← DSB
(M) M, sig M

?
= EPB

(sig) Bob sent M?

SB PB

Disadvantages : the signature is as long as the message;
susceptible to MITM attack.

Cryptographic Concepts 49/80

Digital Signatures: Man-In-The-Middle attack

Eve can launch a MITM attack:
1 Intercept Alice’s message M , S to Bob.
2 Create a new signature string S ′.
3 Create a message M ′ by encrypting S ′ with Bob’s public key:

M ′ ← EPB
(S ′).

4 Send M ′, S ′ to Alice.

Alice:
1 Alice receives M ′, S ′ from Eve (thinking it’s from Bob).
2 She encrypts S ′ with Bob’s public key: v ← EPB

(S ′).

3 She verifies: v
?
= M ′.

Note: Eve can’t choose her own message. This attack only
makes sense if any bitstring forms an OK message, for
example if M is a session key.

Cryptographic Concepts 50/80

Digital Signatures: Man-In-The-Middle attack. . .

Bob Alice

M S ← DSB
(M) M,S • M ′,S ′

M ′ ?
= EPB

(S ′) verified?

SB

S ′ ← · · ·
M ′ ← EPB

(S ′)
PB

Eve

Cryptographic Concepts 51/80

Cryptographic Hash Functions

Public key algorithms are too slow to sign large documents. A
better protocol is to use a one way hash function also known
as a cryptographic hash function (CHF).

CHFs are checksums or compression functions : they take an
arbitrary block of data and generate a unique, short,
fixed-size, bitstring.

✞ ☎

> echo ” h e l l o ” | sha1sum
f572d396 f a e9206628714 fb2ce00 f72e94 f2258 f −
> echo ” h e l l a ” | sha1sum
1519 ca327399f9d699a fb0f8a3b7e1ea9d1edd0c −
> echo ”can ’ t b e l i e v e i t ’ s not b u t t e r ! ” | sha1sum
34 e780e19b07b003b7cf1babba8e f7399b7f81dd −

✝ ✆

Cryptographic Concepts 52/80

Signature Protocol

1 Bob computes a one-way hash of his document.

2 Bob encrypts the hash with his private key, thereby signing it.

3 Bob sends the encrypted hash and the document to Alice.

4 Alice decrypts the hash Bob sent him, and compares it against
a hash she computes herself of the document. If they are the
same, the signature is valid.

hash ← h(M)

sig ← ESB
(hash)

DPB
(sig)

?
= h(M)

Cryptographic Concepts 53/80

Signature Protocol. . .

Bob Alice

M hash← h(M) S ← ESB
(hash) M,S DPB

(S)
?
= h(M) Bob sent M?

SB PB

Advantage : the signature is short; defends against MITM
attack.

Cryptographic Concepts 54/80

Cryptographic Hash Functions. . .

CHFs are easy to compute, but hard to invert .

I.e.

given message M , it’s easy to compute y ← h(M);
given a value y it’s hard to compute an M such that
y = h(M).

This is what we mean by CHFs being one-way .

Using the one-way property, we can defend against the
Man-In-The-Middle attack.

Cryptographic Concepts 55/80

Cryptographic Hash Functions: MITM attack

Bob Alice

M S ← ESB
(h(M)) M,S • M ′,S ′

DPB
(S ′)

?
= h(M ′) verified?

SB

S ′ ← · · ·
y ′ ← EPB

(S ′)
find M ′ • y ′ = h(M ′)

PB

Eve

Eve has to find a message M ′ that hashes to y ′, the result of
encrypting the forged signature S ′.
This is infeasible since h is one-way .

Cryptographic Concepts 56/80

Cryptographic Hash Functions. . .

CHFs also have the property to be collision resistant .

I.e. given M it’s hard to find a different message M ′ such that
h(M) = h(M ′).

This makes Eve’s job even harder: given M,S from Bob she
has to find a different message M ′ that has the same
signature S .

Cryptographic Concepts 57/80

Cryptographic Hash Functions: tripwire

1 When initializing a system, store hashes of all important files
in secure storage.

2 Detect tampering by re-computing the hashes and comparing
against the original values.

✞ ☎

> sha1sum / e t c / passwd > o k f i l e s
> sha1sum −−check o k f i l e s
/ e t c /passwd : OK

✝ ✆

http://sourceforge.net/projects/tripwire.

Cryptographic Concepts 58/80

Message Authentication Codes (MAC)

MACs are used to ensure the integrity of messages sent over
insecure channels.

We assume that Alice and Bob have a shared secret
symmetric key K .
Alice wants to send message M to Bob:

1 A← h(K ||M)
2 Send M , A to Bob.

Bob:
1 Receive M ′, A′ from Alice
2 A′′ ← h(K ||M ′)

3 Verify: A′′
?
= A′.

|| means concatenation.

The one-way nature of h makes it infeasible for Eve to extract
K from A = h(K ||M), and without K she can’t forge a new
message with a correct MAC.

Cryptographic Concepts 59/80

MACS: MITM attack

Bob Alice

M A← h(K ||M) M,A • M ′,A′

A′
?
= h(K ||M ′) verified?

K

K ← · · ·A · · ·?
M ′ ← · · ·
A′ ← h(K ||M ′)

K

Eve

Eve has to recover K from A — infeasible since h is one-way.

Cryptographic Concepts 60/80

http://sourceforge.net/projects/tripwire

MACs vs. Digital Signatures

MACs use shared secret symmetric keys, digital signatures use
public keys.

Digital signatures also protect against non-repudiation , i.e.,
Alice can’t deny that she’s the one who sent a particular
message.

Digital signatures are transferable , i.e. if Bob receives M,S
from Alice, he can send on that message/signature pair to
Charles who can verify that it’s Alice who sent that message.

Cryptographic Concepts 61/80

Digital Certificates

How does Alice know that PB is actually Bob’s public key?
What if there are many Bobs?

A Certificate Authority (CA) is a trusted third party (TTT)
who issues a certificate stating that

The Bob who lives on Desolation Row and has
phone number (555) 867-5309 and the email
address bob@gmail.com has the public key PB . This
certificate is valid until June 11, 2012.

The CA has to digitally sign (with their private key SCA) this
certificate so that we know that it’s real.

Cryptographic Concepts 62/80

Digital Certificates

List of certificates in the Chrome browser.

Digital Certificates: X.509

✞ ☎

• C e r t i f i c a t e
• Ve r s i on
• S e r i a l Number
• Algor i thm ID
• I s s u e r
• V a l i d i t y : [Not Be fo r e . . Not A f t e r]
• Sub j ec t
• Sub j ec t Pub l i c Key I n f o
• Pub l i c Key A lgor i thm
• Sub j ec t Pub l i c Key

• I s s u e r Unique I d e n t i f i e r (o p t i o n a l)
• Sub j ec t Unique I d e n t i f i e r (o p t i o n a l)

• C e r t i f i c a t e S i gn a t u r e A lgor i thm
• C e r t i f i c a t e S i gn a t u r e

✝ ✆

Cryptographic Concepts 64/80

bob@gmail.com

Digital Certificates: chase.com

In Safari:
1 Go to chase.com

2 click on the padlock
3 command-drag the certificate, creating the file

chaseonline.chase.com.txt.
4 Convert to unix newlines:

✞ ☎

> t r ’ \ r ’ ’ \n ’ \
< c h a s e o n l i n e . chase . com . t x t \
> chase . t x t

✝ ✆

Cryptographic Concepts 65/80

Digital Certificates: chase.com I

chaseonline.chase.com

Subject Name

Country US

State/Province Ohio

Locality Columbus

Organization JPMorgan Chase

Organizational Unit cig1w156

Common Name chaseonline.chase.com

Issuer Name

Country US

Organization VeriSign, Inc.

Organizational Unit VeriSign Trust Network

Cryptographic Concepts 66/80

Digital Certificates: chase.com II

Common Name VeriSign Class 3 International ...

Serial Number 11 D4 0D 20 EE 53 E1 91 19 38 4C ...

Version 3

Signature Algorithm SHA-1 with RSA Encryption ...

Parameters none

Not Valid Before Wednesday, April 27, 2011 17:00:00 MST

Not Valid After Friday, May 18, 2012 16:59:59 MST

Public Key Info

Algorithm RSA Encryption

Parameters none

Public Key 256 bytes : A7 15 F2 F5 BD AB FE D0 ...

Exponent 65537

Cryptographic Concepts 67/80

Digital Certificates: chase.com III

Key Size 2048 bits

Key Usage Encrypt, Verify, Wrap, Derive

Signature 256 bytes : 76 9B D8 C5 77 1E CB 01 ...

Extension Key Usage (2.5.29.15)

Critical NO

Usage Digital Signature, Key Encipherment

Fingerprints

SHA1 DF BF D3 7A 93 15 E9 ED CD 44 D8 ...

MD5 8B 60 1E B0 5F 69 59 52 80 E2 72 ...

Cryptographic Concepts 68/80

chase.com
chase.com
chaseonline.chase.com.txt
chase.com
chase.com
chase.com

Digital Certificates: Securely connecting to chase.com

To do online banking with chase.com, Alice wants to ensure that

the web site is who it claims to be,
no one is eavesdropping on her interaction with the web.

Cryptographic Concepts 69/80

Digital Certificates: Securely connecting to chase.com

1 Alice browses to https://chase.com

2 The browser asks chase.com to identify itself.

3 chase.com returns its certificate to the browser.

4 Extract CA← from the certificate. The certificate is signed
with SCA.

5 The browser checks if it trusts the certificate:

Do we trust the CA? The browser has public keys PCA of
trusted CAs pre-installed.
Has the certificate expired?

6 The browser generates a session-key K ;

7 Extract Pchase.com ← from the certificate.

8 The browser encrypts K with Pchase.com

9 The browser sends Pchase.com(K) to chase.com.

Cryptographic Concepts 70/80

In-Class Exercise I — Goodrich & Tamassia R-1.12

What are the strengths and weaknesses of symmetric-key
encryption and public-key encryption?

Cryptographic Concepts 71/80

In-Class Exercise II— Goodrich & Tamassia C-1.10

Alice and Bob are communicating using public key
cryptography.

Bob is Alice’s bookie.

Bob send messages of the form EPA
(3rd race @ saratoga?).

Alice responds with a message of the form
EPB

($100 on Golden Mane).

Eve knows PA and PB , the form of the messages, that Alice
only bets in multiples of $100 and never more than $1000,
and all the races and all the horses at all the race tracks (easy
to get via a web search).

How can Eve learn what Alice is betting?

Cryptographic Concepts 72/80

chase.com
chase.com
chase.com
https://chase.com
chase.com
chase.com
chase.com

In-Class Exercise III — Goodrich & Tamassia C-1.11

Can you think of a way to prevent Eve in the previous exercise
from learning the contents of the communication?

Cryptographic Concepts 73/80

In-Class Exercise IV — Goodrich & Tamassia C-1.12

Alice is full of good ideas for new startups that she wants to
send to Bob.

She wants to make sure that Charles can’t take credit for her
ideas.

How can she achieve this using public-key cryptography?

Cryptographic Concepts 74/80

In-Class Exercise V — Goodrich & Tamassia C-1.13

Alice is full of good ideas for new startups that she wants to
send to Bob.

She wants to make sure that Charles can’t take credit for her
ideas.

How can she achieve this using symmetric-key cryptography?

Cryptographic Concepts 75/80

In-Class Exercise VI — Goodrich & Tamassia C-1.14

Alice and Daisy are both full of good ideas for new startups
that they want to send to Bob.

Each wants to make sure that the other cannot take credit for
their ideas.

Alice, Daisy, and Bob therefore share a secret key K .

Along with each message M, they send d = h(K ||M).

Can Bob verify who sent him a particular idea?

Cryptographic Concepts 76/80

In-Class Exercise VII — Goodrich & Tamassia C-1.17

Alice and Bob want to verify they have the same secret n-bit
key K . They engage in the following protocol:

1 Alice generates a random n-bit value R .
2 Alice sends X ← KA ⊕ R to Bob (⊕ = exclusive-or).
3 Bob sends Y ← KB ⊕ X to Alice.
4 Alice compares R and Y . If R = Y , she concludes that

KA = KB .

How can Eve recover the keys?

Cryptographic Concepts 77/80

Outline

1 Security Principles
2 Access Control Models
3 Cryptographic Concepts

Symmetric Encryption Protocol
Public Key Protocol
Digital Signatures
Cryptographic Hash Functions
Digital Certificates
In-Class Exercises

4 Summary

Summary 78/80

Readings

Chapter 1 in Introduction to Computer Security, by Goodrich
and Tamassia.

Summary 79/80

Acknowledgments

Material and exercises have also been collected from these sources:

1 Bishop, Introduction to Computer Security.

Summary 80/80

	Security Principles
	Access Control Models
	Cryptographic Concepts
	Symmetric Encryption Protocol
	Public Key Protocol
	Digital Signatures
	Cryptographic Hash Functions
	Digital Certificates
	In-Class Exercises

	Summary

