
CSc 466/566

Computer Security

7 : Cryptography — Public Key
Version: 2012/02/15 16:15:24

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/83

Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
Introduction 2/83

History of Public Key Cryptography

RSA Conference 2011-Opening-Giants Among Us:
http://www.youtube.com/watch?v=mvOsb9vNIWM&feature=related

Rivest, Shamir, Adleman - The RSA Algorithm Explained:
http://www.youtube.com/watch?v=b57zGAkNKIc

Bruce Schneier - Who are Alice & Bob?:
http://www.youtube.com/watch?v=BuUSi_QvFLY&feature=related

Adventures of Alice & Bob - Alice Gets Lost:
http://www.youtube.com/watch?v=nULAC_g22So http://www.youtube.com/watch?v=nJB7a79ahGM

Introduction 3/83

Public-key Algorithms

Definition (Public-key Algorithms)

Public-key cryptographic algorithms use different keys for
encryption and decryption.

Bob’s public key: PB

Bob’s secret key: SB

EPB
(M) = C

DSB
(C ) = M

DSB
(EPB

(M)) = M

Introduction 4/83

collberg@gmail.com
http://www.youtube.com/watch?v=mvOsb9vNIWM&feature=related
http://www.youtube.com/watch?v=b57zGAkNKIc
http://www.youtube.com/watch?v=BuUSi_QvFLY&feature=related
http://www.youtube.com/watch?v=nULAC_g22So
http://www.youtube.com/watch?v=nJB7a79ahGM


Public Key Protocol

Key-management is the main problem with symmetric
algorithms – Bob and Alice have to somehow agree on a key
to use.

In public key cryptosystems there are two keys, a public one
used for encryption and and private one for decryption.

1 Alice and Bob agree on a public key cryptosystem.

2 Bob sends Alice his public key, or Alice gets it from a public
database.

3 Alice encrypts her plaintext using Bob’s public key and sends
it to Bob.

4 Bob decrypts the message using his private key.

Introduction 5/83

Public Key Encryption Protocol. . .

Alice Bob

plaintext encrypt ciphertext decrypt plaintext

PB
Eve

SB

Introduction 6/83

Public Key Encryption: Key Distribution

Alice Bob

Carol Dave

SA,PA SB ,PB

SC ,PC SD ,PD

PA,PB

PA,PC PA,PD PB ,PDPB ,PC

PC ,PD

Advantages : n key pairs to communicate between n parties.

Disadvantages : Ciphers (RSA,. . . ) are slow; keys are large

Introduction 7/83

A Hybrid Protocol

In practice, public key cryptosystems are not used to encrypt
messages – they are simply too slow.

Instead, public key cryptosystems are used to encrypt
keys for symmetric cryptosystems . These are called
session keys , and are discarded once the communication
session is over.

1 Bob sends Alice his public key.

2 Alice generates a session key K , encrypts it with Bob’s public
key, and sends it to Bob.

3 Bob decrypts the message using his private key to get the
session key K .

4 Both Alice and Bob communicate by encrypting their
messages using K .

Introduction 8/83



Hybrid Encryption Protocol. . .

Alice Bob

K encrypt EPB
(K ) decrypt K

PB SB

M encrypt EK (M) decrypt M

K K

Introduction 9/83

Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
RSA 10/83

RSA

RSA is the best know public-key cryptosystem. Its security is
based on the (believed) difficulty of factoring large numbers.

Plaintexts and ciphertexts are large numbers (1000s of bits).

Encryption and decryption is done using modular
exponentiation.

RSA 11/83

RSA: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (e, n).
2 Compute C = Me mod n.

Bob (decrypt a message C received from Alice):
1 Compute M = C d mod n.

RSA 12/83



RSA: Algorithm Notes

How should we choose e?

It doesn’t matter for security; everybody could use the same e.
It matters for performance: 3, 17, or 65537 are good choices.

n is referred to as the modulus , since it’s the n of mod n.

You can only encrypt messages M < n. Thus, to encrypt
larger messages you need to break them into pieces, each < n.

Throw away p, q, and φ(n) after the key generation stage.

Encrypting and decrypting requires a single modular
exponentiation.

RSA 13/83

RSA Example: Key Generations

1 Select two primes: p = 47 and q = 71.

2 Compute n = pq = 3337.

3 Compute φ(n) = (p − 1)(q − 1) = 3220.

4 Select e = 79.

5 Compute

d = e−1 mod φ(n)

= 79−1 mod 3220

= 1019

6 P = (79, 3337) is the RSA public key.

7 S = (1019, 3337) is the RSA private key.

RSA 14/83

RSA Example: Encryption

1 Encrypt M = 6882326879666683.

2 Break up M into 3-digit blocks:

m = 〈688, 232, 687, 966, 668, 003〉

Note the padding at the end.

3 Encrypt each block:

c1 = me
1 mod n

= 68879 mod 3337

= 1570

We get:

c = 〈1570, 2756, 2091, 2276, 2423, 158〉

RSA 15/83

RSA Example: Decryption

1 Decrypt each block:

m1 = cd
1 mod n

= 15701019 mod 3337

= 688

RSA 16/83



In-Class Exercise: Goodrich & Tamassia R-8.18

Show the result of encrypting M = 4 using the public key
(e, n) = (3, 77) in the RSA cryptosystem.

RSA 17/83

In-Class Exercise: Goodrich & Tamassia R-8.20

Alice is telling Bob that he should use a pair of the form

(3, n)

or
(16385, n)

as his RSA public key if he wants people to encrypt messages
for him from their cell phones.

As usual, n = pq, for two large primes, p and q.

What is the justification for Alice’s advice?

RSA 18/83

In-Class Exercise: Stallings pp. 270-271

1 Generate an RSA key-pair using p = 17, q = 11, e = 7.

2 Encrypt M = 88.

3 Decrypt the result from 2.

RSA 19/83

RSA Correctness

We have

C = Me mod n

M = Cd mod n.

To show correctness we have to show that decryption of the
ciphertext actually gets the plaintext back, i.e that, for all
M < n

Cd mod n = (Me)d mod n

= Med mod n

= M

RSA 20/83



RSA Correctness: Case 1

From the key generation step we have

d = e−1 mod φ(n)

from which we can conclude that

ed mod φ(n) = 1

ed = kφ(n) + 1

Case 1, M is relatively prime to n:

Cd mod n = Med mod n

= Mkφ(n)+1 mod n

= M · (Mφ(n))k mod n

= M · 1k mod n

= M mod n

= M

RSA 21/83

RSA Correctness: Case 1. . .

Mφ(n) mod n = 1 follows from Euler’s theorem.

Theorem (Euler)

Let x be any positive integer that’s relatively prime to the integer
n > 0, then

xφ(n) mod n = 1

RSA 22/83

RSA Correctness: Case 2

Assume that M is not relatively prime to n, i.e. M has some
factor in common with n, since M < n.

There are two cases:
1 M is relatively prime with q and M = ip, or
2 M is relatively prime with p and M = iq.

We consider only the first case, the second is similar.

RSA 23/83

RSA Correctness: Case 2. . .

We have that

φ(n) = φ(pq) = φ(p)φ(q)

By Euler’s theorem we have that

Mkφ(n) mod q = Mkφ(p)φ(q) mod q

= (Mkφ(p))φ(q) mod q

= 1

Thus, for some integer h

Mkφ(n) = 1 + hq

Multiply both sides by M

M · Mkφ(n) = M(1 + hq)

Mkφ(n)+1 = M + Mhq

RSA 24/83



RSA Correctness: Case 2. . .

We can now prove Case 2, for M = ip:

Cd mod n = Med mod n

= Mkφ(n)+1 mod n

= (M + Mhq) mod n

= (M + (ip)hq) mod n

= (M + (ih)pq) mod n

= (M + (ih)n) mod n

= (M mod n) + ((ih)n mod n)

= M mod n

= M

RSA 25/83

RSA Security

Summary:
1 Compute n = pq, p and q prime.
2 Select a small odd integer e relatively prime with φ(n).
3 Compute φ(n) = (p − 1)(q − 1).
4 Compute d = e−1 mod φ(n).
5 PB = (e, n) is Bob’s RSA public key.
6 SB = (d , n) is Bob’ RSA private key.

Since Alice knows Bob’s PB , she knows e and n.

If she can compute d from e and n, she has Bob’s private key.

If she knew φ(n) = (p − 1)(q − 1) she could compute
d = e−1 mod φ(n) using Euclid’s algorithm.

If she could factor n, she’d get p and q!

RSA 26/83

Security of Cryptosystems by Failed Cryptanalysis

1 Propose a cryptographic scheme.

2 If an attack is found, patch the scheme. GOTO 2.

3 If enough time has passed ⇒ The scheme is secure!

How long is enough?
1 It took 5 years to break the Merkle-Hellman cryptosystem.
2 It took 10 years to break the Chor-Rivest cryptosystem.

RSA 27/83

RSA Security. . .

If we can factor n, we can find p and q and the scheme is
broken.

As far as we know, factoring is hard.

We need n to be large enough, 2,048 bits.

RSA 28/83



RSA Factoring Challenge

http://www.rsa.com/rsalabs/node.asp?id=2093

✞ ☎
Name : RSA−576
D i g i t s : 174
188198812920607963838697239461650439807163563379417382700763356422
988859715234665485319060606504743045317388011303396716199692321205
734031879550656996221305168759307650257059

✝ ✆

On December 3, 2003, a team of researchers in Germany and
several other countries reported a successful factorization of
the challenge number RSA-576.

The factors are
✞ ☎

398075086424064937397125500550386491199064362
342526708406385189575946388957261768583317

472772146107435302536223071973048224632914695
302097116459852171130520711256363590397527

✝ ✆

RSA 29/83

RSA Factoring Challenge. . .

✞ ☎
Name : RSA−640
D i g i t s : 193
310741824049004372135075003588856793003734602284272754572016194882
320644051808150455634682967172328678243791627283803341547107310850
1919548529007337724822783525742386454014691736602477652346609

✝ ✆

The factoring research team of F. Bahr, M. Boehm, J. Franke,
T. Kleinjung continued its productivity with a successful
factorization of the challenge number RSA-640, reported on
November 2, 2005.
The factors are:

✞ ☎
16347336458092538484431338838650908598417836700330
92312181110852389333100104508151212118167511579

1900871281664822113126851573935413975471896789968
515493666638539088027103802104498957191261465571

✝ ✆

The effort took approximately 30 2.2GHz-Opteron-CPU years
according to the submitters, over five months of calendar time.

RSA 30/83

RSA Factoring Challenge. . .

✞ ☎
Name : RSA−704
D i g i t s : 212
7403756347956171282804679609742957314259318888923128908493623263897
2765034028266276891996419625117843995894330502127585370118968098286
733173273108930900552505116877063299072396380786710086096962537934650563796359

Name : RSA−768
D i g i t s : 232
123018668453011775513049495838496272077285356959533479219732245215172
640050726365751874520219978646938995647494277406384592519255732630345
3731548268507917026122142913461670429214311602221240479274737794080665
351419597459856902143413

Name : RSA−896
D i g i t s : 270
4120234369866595438555313653325759481798116998443279828454556264338764
4556524842619809887042316184187926142024718886949256093177637503342113
0982397485150944909106910269861031862704114880866970564902903653658867
433731720813104105190864254793282601391257624033946373269391

Name : RSA−1024
D i g i t s : 309
1350664108659952233496032162788059699388814756056670275244851438515265
1060485953383394028715057190944179820728216447155137368041970396419174
3046496589274256239341020864383202110372958725762358509643110564073501
5081875106765946292055636855294752135008528794163773285339061097505443
34999811150056977236890927563

✝ ✆

RSA 31/83

RSA Factoring Challenge. . .

✞ ☎
Name : RSA−1536
D i g i t s : 463
1847699703211741474306835620200164403018549338663410171471785774910651
6967111612498593376843054357445856160615445717940522297177325246609606
4694607124962372044202226975675668737842756238950876467844093328515749
6578843415088475528298186726451339863364931908084671990431874381283363
5027954702826532978029349161558118810498449083195450098483937752272570
5257859194499387007369575568843693381277961308923039256969525326162082
3676490316036551371447913932347169566988069

Name : RSA−2048
D i g i t s : 617
2519590847565789349402718324004839857142928212620403202777713783604366
2020707595556264018525880784406918290641249515082189298559149176184502
8084891200728449926873928072877767359714183472702618963750149718246911
6507761337985909570009733045974880842840179742910064245869181719511874
6121515172654632282216869987549182422433637259085141865462043576798423
3871847744479207399342365848238242811981638150106748104516603773060562
0161967625613384414360383390441495263443219011465754445417842402092461
6515723350778707749817125772467962926386356373289912154831438167899885
040445364023527381951378636564391212010397122822120720357

✝ ✆

RSA 32/83

http://www.rsa.com/rsalabs/node.asp?id=2093


RSA Security: How to use RSA

Two plaintexts M1 and M2 are encrypted into ciphertexts C1

and C2.

But, RSA is deterministic!

If C1 = C2 then we know that M1 = M2!

Also, side-channel attacks are possible against RSA, for
example by measuring the time taken to encrypt.

RSA 33/83

Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
GPG 34/83

Software – GPG

gpg is a public domain implementation of pgp.

Supported algorithms:

Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA
Cipher: 3DES, CAST5, BLOWFISH, AES, AES192,

AES256, TWOFISH, CAMELLIA128,
CAMELLIA192, CAMELLIA256

Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384,
SHA512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2

http://www.gnupg.org.

GPG 35/83

Key generation: Bob

> gpg --gen-key

Please select what kind of key you want:

(1) RSA and RSA (default)

(2) DSA and Elgamal

(3) DSA (sign only)

(4) RSA (sign only)

Your selection? 1

What keysize do you want? (2048)

Key is valid for? (0)

Key does not expire at all

Real name: Bobby

Email address: bobby@gmail.com

Comment: recipient

You need a Passphrase to protect your secret key.

Enter passphrase: Bob rocks

Repeat passphrase: Bob rocks

GPG 36/83

http://www.gnupg.org


Key generation: Alice

> gpg --gen-key

Please select what kind of key you want:

(1) RSA and RSA (default)

(2) DSA and Elgamal

(3) DSA (sign only)

(4) RSA (sign only)

Your selection? 1

What keysize do you want? (2048)

Key is valid for? (0)

Key does not expire at all

Real name: Alice

Email address: alice@gmail.com

Comment: sender

You need a Passphrase to protect your secret key.

Enter passphrase: Alice is cute

Repeat passphrase: Alice is cute

GPG 37/83

Exporting the Key

> gpg --armor --export Bobby

-----BEGIN GPG PUBLIC KEY BLOCK-----

Version: GnuPG v1.4.11 (Darwin)

mQENBE83U28BCADTVOkHpNjWzk7yEzMhiNJcmOtmUYfn4hzgYTDsP2otI0UhfJ4q

EZCuPoxECIZ479k3YpBvZM2JC48Ht9j1kVnDPLCrongyRdSko0AwG7OYAyHWa7/U

SeGwjZ+0MUuM3SwqHdo1/0XS3P8LABTQNXtrQf9kF8UNLIaHr1IvBcae1K44MPL6

................................................................

EBHmAM7iiWgWI6/6qEmN46ZQEmoR86vWhQL3LQ6p/FUaBA==

=FZ78

-----END GPG PUBLIC KEY BLOCK-----

GPG 38/83

Encryption

We can encrypt a message using Bobby’s key:

> cat message

Attack at dawn

> gpg --recipient bobby --armor --encrypt message

> cat message.asc

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.11 (Darwin)

hQEMA97v9lbZUpHvAQf/a9QklXMiMzBWy5yyZBtNrg7FcrIqx+gXVVUXNN86tZtE

RF42elwU6QwamDzfcOHqp+3zeor4Y5xN+/pL91xti6uwFOhgGrCGJq//AfUKgQyk

MH2e4gR8Y1BuPm9b1c7uzXxRMMOUBBt75KquYGOBLybsP29ttD9iL/ZJl1zSPjSj

El7O0Gp7PqEBotStVOtuknYW/fX0zXndU8XNllKnsnZn21Xm0rMQcFMu8Do/tF5I

lRfTEcL4S9tV4vshgXhNSpTg9sZs1UZynvU2cJqyYkCtgT7TdtrK3fTa8UN+CYQv

U2QRnaNtFhYwBMonFqhefNzDqeZb+P0RqOuoDllYuNJRAViJ3CLjT7kwgBgRtNfY

RkGArQQmgrknW2jq/Y2GZTE8CC7pNXY8U3KYMl9hRA6U5fMp08ndFp8vowBbB2sw

zjxjSY7ZeIR2uwxdLYydtW4m

=B+JA

-----END PGP MESSAGE-----

GPG 39/83

Decryption

Bobby can now decrypt the message using his private key:

> gpg --decrypt message.asc

You need a passphrase to unlock the secret key for

user: "Bobby (recipient) <bobby@gmail.com>"

2048-bit RSA key, ID D95291EF, created 2012-02-12

(main key ID 9974031B)

Enter passphrase: Bob rocks

gpg: encrypted with 2048-bit RSA key, ID D95291EF, created 2012-02-12

"Bobby (recipient) <bobby@gmail.com>"

Attack at dawn

GPG 40/83



The keyring

> gpg --list-keys

/Users/collberg/.gnupg/pubring.gpg

----------------------------------

pub 2048R/9974031B 2012-02-12

uid Bobby (recipient) <bobby@gmail.com>

sub 2048R/D95291EF 2012-02-12

pub 2048R/4EC8A0CB 2012-02-12

uid Alice (sender) <alice@gmail.com>

sub 2048R/B901E082 2012-02-12

GPG 41/83

The keyring. . .

> gpg --list-secret-keys

/Users/collberg/.gnupg/secring.gpg

----------------------------------

sec 2048R/9974031B 2012-02-12

uid Bobby (recipient) <bobby@gmail.com>

ssb 2048R/D95291EF 2012-02-12

sec 2048R/4EC8A0CB 2012-02-12

uid Alice (sender) <alice@gmail.com>

ssb 2048R/B901E082 2012-02-12

GPG 42/83

Sign and Encrypt

Bob can sign his message before sending it to Alice:

> gpg -se --recipient alice --armor message

You need a passphrase to unlock the secret key for

user: "Bobby (recipient) <bobby@gmail.com>"

2048-bit RSA key, ID 9974031B, created 2012-02-12

Enter passphrase: Bob rocks

> cat message.asc

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.11 (Darwin)

hQEMA7osp1S5AeCCAQgAsSqSs+Urf0f3KHTtP7cqTwugpcJ9oUAGkw/KQ0DHIE0v

................................................................

8XEAaCwZ8aZK1lXhqBSd/9hCm9Mup2NECihO8crVyff7NTWFyaTBeGAm10q3y46o

QpIgPbcdYZqIt8e/8wPU6xlMZUStzxBKLB+Rj/Zg35ZVioYL

=oiv8

-----END PGP MESSAGE-----
GPG 43/83

Check Signature and Decrypt

Alice can now decrypt the message and check the signature:

> gpg --decrypt message.asc

You need a passphrase to unlock the secret key for

user: "Alice (sender) <alice@gmail.com>"

2048-bit RSA key, ID B901E082,

created 2012-02-12 (main key ID 4EC8A0CB)

Enter passphrase: Alice is cute

gpg: encrypted with 2048-bit RSA key, ID B901E082, created 2012-02-12

"Alice (sender) <alice@gmail.com>"

Attack at dawn

gpg: Signature made Sat Feb 11 23:10:59 2012 MST

using RSA key ID 9974031B

gpg: Good signature from "Bobby (recipient) <bobby@gmail.com>"

GPG 44/83



Symmetric Encryption Only

> gpg --cipher-algo=AES --armor --symmetric message

Enter passphrase: sultana

Repeat passphrase: sultana

> cat message.asc

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.11 (Darwin)

jA0EBwMCgZ3PBfSZxJlg0ksBBooTMLEVQ2q9HkTR5y9FIoX9nbsyohrOXeQLFlcf

wtWcg+dZvlMS6D7OE3wZCeW2LX50kYcU17MUc8wnJLDAzAdRqPAgDma+sP4=

=UtI4

-----END PGP MESSAGE-----

> gpg message.asc

gpg: AES encrypted data

Enter passphrase: sultana

gpg: encrypted with 1 passphrase

> cat message

Attack at dawn
GPG 45/83

Deleting Keys

> gpg --delete-secret-keys bobby

sec 2048R/9974031B 2012-02-12 Bobby (recipient) <bobby@gmail.com>

Delete this key from the keyring? (y/N) y

This is a secret key! - really delete? (y/N) y

> gpg --delete-keys bobby

pub 2048R/9974031B 2012-02-12 Bobby (recipient) <bobby@gmail.com>

Delete this key from the keyring? (y/N) y

GPG 46/83

Generating Primes

Generate a prime number of the given number of bits:

> gpg --gen-prime 1 16

C4B7

> gpg --gen-prime 1 1024

D34D4347ED013242EE06811BC561C6587D75ADE33D1BEC954D648E22

9D88B5E0AF1394459FB48B135B99C8BA8C50E5331C6226CBF6D70031

4A8CC84C7B363BE7DD7BBBB29E545D199339263F5FB2E9F1B84BA9D5

05B5B79858FC6149CF09E6C56D9730C3BD1E62B378C8DFAF4233B8DC

BA999A21EC9C4BF8C60AACDCBC607AC5

GPG 47/83

Generating Random Numbers

Generate 100 (base64 encoded) random bytes:

> gpg --armour --gen-random 0 100

e0zAVl6jbe/Dma9VF20lMgZxE1RA4S8TwNwu6KP8+o1kjdtBm2

AjKFSVsj/d3zG/9KqmNj7j6symEUZ3e0fWZaWqLBxzJuSur5sK

C8omfPus2QtYJJNOgVbpJ7X9L4t1iNJtnw==

GPG 48/83



Print Message Digests

> gpg --print-mds message

MD5 = 36 D1 A5 12 17 CD 34 FC 04 F5 6C C4 91 39 C7 59

SHA1 = 6DA4 473A 00CE 7AB6 7B6F 884D 1E75 6633 C21A 56DB

RMD160 = D1DE 4194 C0CD 3AED 30F3 38CD 68F3 800F CCF0 3B87

SHA224 = B4E94780 1AA1A9C3 418F72D8 651BA995 83284003

EBEE183A 589702EE

SHA256 = B83EF405 07696578 9D4BBDA7 D7932700 5F2AE6CB

A2696FDE 69694D12 AFE70E4A

SHA384 = 7AC39A0C 945844F1 1316BB46 C9FC7EEA E892A178

2D20E4CA E7BE686C 1A091C8C F1BBDFD1 3D42BEA2

88AF5A4F E3705474

SHA512 = 9CA1EB88 F064CB0D 536254B2 5755919F 45564276

96CA27A0 389E4817 53F81DC2 3222488D 7D11F3DD

C066B9E8 027F3870 395A2561 157DDC38 BD679D37

C2E361CC

GPG 49/83

Goal: Read a message encrypted with gpg

1 Decrypt the message itself (OR)

2 Determine symmetric key used to encrypt the message by
other means (OR)

3 Get recipient to help decrypt message (OR)

4 Obtain private key of recipient.

http://www.schneier.com/paper-attacktrees-fig7.html

GPG 50/83

Goal: Read a message encrypted with gpg. . .

Decrypt the message itself:

1 Break asymmetric encryption (OR)

1 Brute force break asymmetric encryption (OR)
2 Mathematically break asymmetric encryption (OR)

1 Break RSA (OR)

2 Factor RSA modulus/calculate Elgamal discrete log

3 Cryptanalyze asymmetric encryption (OR)

1 General cryptanalysis of RSA/Elgamal (OR)

2 Exploit weakness in RSA/Elgamal (OR)

3 Timing attack on RSA/Elgamal

2 Break symmetric-key encryption

1 Brute force break symmetric-key encryption
2 Cryptanalysis of symmetric-key encryption

GPG 51/83

Goal: Read a message encrypted with gpg. . .

Determine symmetric key by other means:
1 Fool sender into encrypting message using public key whose

private key is known (OR)
1 Convince sender that fake key (with known private key) is the

key of the intended recipient
2 Convince sender to encrypt with more than one key—the real

key of the recipient and a key whose private key is known.
3 Have the message encrypted with a different public key in the

background, unbeknownst to the sender.
2 Have the recipient sign the encrypted publc key (OR)
3 Monitor the sender’s computer memory (OR)
4 Monitor the receiver’s computer memory (OR)
5 Determine key from pseudo-random number generator (OR)

1 Determine state of randseed during encryption (OR)
2 Implant virus that alters the state of randseed. (OR)
3 Implant software that affects the choice of symmetric key.

6 Implant virus that that exposes public key.
GPG 52/83

http://www.schneier.com/paper-attacktrees-fig7.html


Goal: Read a message encrypted with gpg. . .

Get recipient to help decrypt message:

GPG 53/83

Goal: Read a message encrypted with gpg. . .

Obtain private key of recipient:

GPG 54/83

Goal: Read a message encrypted with PGP

What immediately becomes apparent from the attack
tree is that breaking the RSA or IDEA encryption
algorithms are not the most profitable attacks against
PGP. There are many ways to read someone’s
PGP-encrypted messages without breaking the
cryptography. You can capture their screen when they
decrypt and read the messages (using a Trojan horse like
Back Orifice, a TEMPEST receiver, or a secret camera),
grab their private key after they enter a passphrase (Back
Orifice again, or a dedicated computer virus), recover
their passphrase (a keyboard sniffer, TEMPEST receiver,
or Back Orifice), or simply try to brute force their
passphrase (I can assure you that it will have much less
entropy than the 128-bit IDEA keys that it generates).

GPG 55/83

Goal: Read a message encrypted with PGP. . .

In the scheme of things, the choice of algorithm and the
key length is probably the least important thing that
affects PGP’s overall security. PGP not only has to be
secure, but it has to be used in an environment that
leverages that security without creating any new
insecurities.

http://www.schneier.com/paper-attacktrees-fig7.html

GPG 56/83

http://www.schneier.com/paper-attacktrees-fig7.html


Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
Elgamal 57/83

Elgamal

The Elgamal cryptosystem relies on the inherent difficulty of
calculating discrete logarithms.

It is a probabilistic scheme:

a particular plaintext can be encrypted into multiple different
ciphertexts;
⇒ ciphertexts become twice the length of the plaintext.

Elgamal 58/83

Elgamal: Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).
2 Pick a random number k between 1 and p − 2.
3 Compute the ciphertext C = (a, b):

a = g k mod p

b = Myk mod p

Bob (decrypt a message C = (a, b) received from Alice):
1 Compute M = b(ax)−1 mod p.

Elgamal 59/83

Elgamal: Algorithm Notes

Alice must choose a different random number k for every
message, or she’ll leak information.

Bob doesn’t need to know the random value k to decrypt.

Each message has p − 1 possible different encryptions.

The division in the decryption can be avoided by use of
Lagrange’s theorem :

M = b · (ax)−1 mod p

= b · ap−1−x mod p

Elgamal 60/83



Elgamal: Finding the generator

Computing the generator is, in general, hard.

We can make it easier by choosing a prime number with the
property that we can factor p − 1.

Then we can test that, for each prime factor pi of p − 1:

g (p−1)/pi mod p 6= 1

If g is not a generator, then one of these powers will 6= 1.

Elgamal 61/83

Elgamal Example: Key generation

1 Pick a prime p = 13.

2 Find a generator g = 2 for Z13 (see next slide).

3 Pick a random number x = 7.

4 Compute
y = gx mod p = 27 mod 13 = 11.

5 PB = (p, g , y) = (13, 2, 11) is Bob’s public key.

6 SB = x = 7 is Bob’ private key.

Elgamal 62/83

Powers of Integers, Modulo 13

2 is a primitive root modulo 13 because for each integer
i ∈ Z13 = {1, 2, 3, . . . , 12} there’s an integer k, such that
i = 2k mod 13:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 3 6 12 11 9 5 10 7 1
3 9 1 3 9 1 3 9 1 3 9 1
4 3 12 9 10 1 4 3 12 9 10 1
5 12 8 1 5 12 8 1 5 12 8 1
6 10 8 9 2 12 7 3 5 4 11 1
7 10 5 9 11 12 6 3 8 4 2 1
8 12 5 1 8 12 5 1 8 12 5 1
9 3 1 9 3 1 9 3 1 9 3 1
10 9 12 3 4 1 10 9 12 3 4 1
11 4 5 3 7 12 2 9 8 10 6 1
12 1 12 1 12 1 12 1 12 1 12 1

Elgamal 63/83

Elgamal Example: Encryption

Encrypt the plaintext message M = 3.

Alice gets Bob’s public key PB = (p, g , y) = (13, 2, 11).

To encrypt:
1 Pick a random number k = 5:
2 Compute:

a = g k mod p = 25 mod 13 = 6

b = Myk mod p = 3 · 115 mod 13 = 8

The ciphertext C = (a, b) = (6, 8).

Elgamal 64/83



Elgamal Example: Decryption

Bob’s private key is SB = x = 7.

Bob receives the ciphertext C = (a, b) = (6, 8) from Alice.

Bob computes the plaintext M:

M = b · (ax)−1 mod p

= b · ap−1−x mod p

= 8 · 613−1−7 mod 13

= 8 · 65 mod 13

= 3

Elgamal 65/83

In-Class Exercise

Pick the prime p = 13.

Find the generator g = 2 for Z13.

Pick a random number x = 9.

Compute
y = gx mod p = 29 mod 13 = 5

PB = (p, g , y) = (13, 2, 5) is Bob’s public key.

SB = x = 9 is Bob’ private key.

1 Encrypt the message M = 11 using the random number
k = 10.

2 Decrypt the ciphertext from 1.

Elgamal 66/83

Elgamal Correctness

Show that M = b · (ax)−1 mod p decrypts.
We have that

a = gk mod p

b = Myk mod p

y = gx mod p

We get

b · (ax)−1 mod p = (Myk) · ((gk)x)−1 mod p

= (Myk) · (gkx )−1 mod p

= (M((gx )k) · (gkx )−1 mod p

= Mgkx · (gkx )−1 mod p

= Mgkx · g−kx mod p

= M mod p

= M
Elgamal 67/83

Elgamal Security

The security of the scheme depends on the hardness of solving
the discrete logarithm problem.

Generally believed to be hard.

Elgamal 68/83



Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
Diffie-Hellman Key Exchange 69/83

Key Exchange

A key exchange protocol (or key agreement protocol ) is a
way for parties to share a secret (such as a symmetric key)
over an insecure channel.

With an active adversary (who can modify messages) we
can’t reliably share a secret.

With a passive adversary (who can only eavesdrop on
messages) we can share a secret.

A passive adversary is said to be honest but curious .

Diffie-Hellman Key Exchange 70/83

Diffie-Hellman Key Exchange

A classic key exchange protocol.

Based on modular exponentiation .

The secret K1 = K2 shared by Alice and Bob at the end of the
protocol would typically be a shared symmetric key.

Diffie-Hellman Key Exchange 71/83

Diffie-Hellman: Algorithm

1 All parties (set-up):
1 Pick p, a prime number.
2 Pick g , a generator for Zp.

2 Alice :
1 Pick a random x ∈ Zp, x > 0.
2 Compute

X = g x mod p.

3 Send X to Bob.

3 Bob :
1 Pick a random y ∈ Zp , x > 0.
2 Compute

Y = g y mod p.

3 Send Y to Alice

4 Alice computes the secret: K1 = Y x mod p.

5 Bob computes the secret: K2 = X y mod p.

Diffie-Hellman Key Exchange 72/83



Example

1 Pick p = 13, a prime number.

2 Pick g = 2, a generator for Z13.

3 Alice :

1 Pick a random x = 3.
2 Compute X = g x mod p = 23 mod 13 = 8.

4 Bob :

1 Pick a random y = 7.
2 Compute Y = g y mod p = 27 mod 13 = 11.

5 Alice computes: K1 = Y x mod p = 113 mod 13 = 5.

6 Bob computes: K2 = X y mod p = 87 mod 13 = 5.

7 ⇒ K1 = K2 = 5.

Diffie-Hellman Key Exchange 73/83

In-Class Exercise

Let p = 19.

Let g = 10.

Let Alice’s secret x = 7.

Let Bob’s secret y = 15.

1 Compute K1.

2 Compute K2.

Diffie-Hellman Key Exchange 74/83

Diffie-Hellman Correctness

Alice has computed

X = gx mod p

K1 = Y x mod p.

Bob has computed

Y = gy mod p

K2 = X y mod p.

Diffie-Hellman Key Exchange 75/83

Diffie-Hellman Correctness. . .

Alice has

K1 = Y x mod p

= (gy )x mod p

= (gx)y mod p

= X y mod p

Bob has

K2 = X y mod p

= (gx)y mod p

= X y mod p

⇒ K1 = K2.

Diffie-Hellman Key Exchange 76/83



Diffie-Hellman Security

The security of the scheme depends on the hardness of solving
the discrete logarithm problem.

Generally believed to be hard.

Diffie-Hellman Property :

Given
p, X = g x , Y = g y

computing
K = g xy mod p

is thought to be hard.

Diffie-Hellman Key Exchange 77/83

Diffie-Hellman: Man-In-The-Middle attack

1 Alice :

1 Send X = gX mod p to Bob.

2 Eve :

1 Intercept X = g x mod p from Alice.
2 Pick a number t in Zp .
3 Send T = g t mod p to Bob.

3 Bob :

1 Send Y = g y mod p to Alice

4 Eve :

1 Intercept Y = g y mod p from Bob.
2 Pick a number s in Zp.
3 Send S = g s mod p to Alice.

Diffie-Hellman Key Exchange 78/83

Diffie-Hellman: Man-In-The-Middle attack. . .

5 Alice and Eve :

1 Compute K1 = g xS mod p

6 Bob and Eve :

1 Compute K2 = g yT mod p

Diffie-Hellman Key Exchange 79/83

Diffie-Hellman: Man-In-The-Middle attack. . .

7 Alice : Send C = EK1
(M) to Bob

8 Eve :

1 Intercept C .
2 Decrypt:M = DK1(C )
3 Re-encrypt:C ′ = EK2(M)
4 Send C ′ to Bob

9 Bob : Send C = EK2
(M) to Alice

10 Eve :

1 Intercept C .
2 Decrypt:M = DK2(C )
3 Re-encrypt:C ′ = EK1(M)
4 Send C ′ to Alice.

Diffie-Hellman Key Exchange 80/83



Outline

1 Introduction
2 RSA

Algorithm
Example
Correctness
Security

3 GPG
4 Elgamal

Algorithm
Example
Correctness
Security

5 Diffie-Hellman Key Exchange
Diffie-Hellman Key Exchange
Example
Correctness
Security

6 Summary
Summary 81/83

Readings and References

Chapter 8.1.1-8.1.5 in Introduction to Computer Security, by
Goodrich and Tamassia.

Summary 82/83

Acknowledgments

Additional material and exercises have also been collected from
these sources:

1 Igor Crk and Scott Baker, 620—Fall 2003—Basic
Cryptography.

2 Bruce Schneier, Applied Cryptography.

3 Pfleeger and Pfleeger, Security in Computing.

4 William Stallings, Cryptography and Network Security.

5 Bruce Schneier, Attack Trees, Dr. Dobb’s Journal December
1999, http://www.schneier.com/paper-attacktrees-ddj-ft.html.

6 Barthe, Grégoire, Beguelin, Hedin, Heraud, Olmedo, Verifiable
Security of Cryptographic Schemes,
http://www.irisa.fr/celtique/blazy/seminar/20110204.pdf.

7 http://homes.cerias.purdue.edu/~crisn/courses/cs355_Fall_2008/lect18.pdf

Summary 83/83

http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.irisa.fr/celtique/blazy/seminar/20110204.pdf
http://homes.cerias.purdue.edu/~crisn/courses/cs355_Fall_2008/lect18.pdf

	Introduction
	RSA
	Algorithm
	Example
	Correctness
	Security

	GPG
	Elgamal
	Algorithm
	Example
	Correctness
	Security

	Diffie-Hellman Key Exchange
	Diffie-Hellman Key Exchange
	Example
	Correctness
	Security

	Summary

