
CSc 466/566

Computer Security

9 : Operating Systems — Introduction
Version: 2012/03/06 12:18:18

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Introduction 2/118

Operating Systems

The OS manages hardware devices (CPU, memory, network
interfaces, output devices).

The OS manages multiple users with different access rights.

The OS manages multiple concurrent processes
(multitasking) with different access rights.

Users and processes should not be allowed to damage shared
resources.

Introduction 3/118

OS Layers

Userland: User Applications

OS: Non-essential Services

OS: Kernel

Hardware: CPU, Memory, I/O

Kernel : manages low-level resources (memory, processors,
I/O devices).

Non-essential OS Services : printing, . . .

I/O : USB, network interfaces, . . . , are managed by
device drivers .

Introduction 4/118

collberg@gmail.com

System Calls

Userland: User Applications

OS: Non-essential Services

OS: Kernel

Hardware: CPU, Memory, I/O

User processes ask for services from the OS by issuing
system calls (syscalls):

1 The user application signals the processor by issuing a
software interrupt ;

2 the CPU switches control to an interrupt handler ;
3 we enter kernel mode (the process traps);
4 the system call executes.

Introduction 5/118

Processes

Processes are created by and managed by the kernel.

Time slicing : The kernel gives each process a fair amount of
time.

A parent process creates a child process by forking :

The child has the same privileges as the parent.
The child inherits the parent’s file descriptors.

The init process is the root of the process tree .

Introduction 6/118

> pstree

-+= 00001 root /sbin/launchd

|--= 00012 root /usr/libexec/kextd

|--= 00013 root /usr/libexec/UserEventAgent -l System

|-+= 00054 root /usr/sbin/cupsd -l

| |--= 00202 _lp HP_LaserJet_1012 9 collberg xfig-batch.nTr527 1 finishings=3 number-up

| \--= 00203 _lp usb://Hewlett-Packard/hp%20LaserJet%201012?serial=00CNFB313769 9 collb

|-+= 00055 root /usr/sbin/httpd -D FOREGROUND -D WEBSHARING_ON

| |--- 00199 _www /usr/sbin/httpd -D FOREGROUND -D WEBSHARING_ON

| |--- 52411 _www /usr/sbin/httpd -D FOREGROUND -D WEBSHARING_ON

| \--- 54604 _www /usr/sbin/httpd -D FOREGROUND -D WEBSHARING_ON

|--= 00056 root /usr/sbin/cron

|-+= 00223 collberg /sbin/launchd

| |--= 00233 collberg /usr/sbin/distnoted agent

| |--= 00240 collberg /usr/libexec/UserEventAgent -l Aqua

| |-+= 00249 collberg /Applications/iTerm.app/Contents/MacOS/iTerm -psn_0_32776

| | |-+= 83311 root login -fp collberg

| | | \-+= 83312 collberg -tcsh

| | | \--= 06649 collberg /usr/local/bin/email -tls -smtp-auth login -smtp-server smt

| | |-+= 79257 root login -fp collberg

| | | \-+= 79258 collberg -tcsh

| | | |--= 07961 collberg /Applications/Emacs.app/Contents/MacOS/Emacs slides.tex

| | | \-+= 08109 collberg pstree

| | | \--- 08110 root ps -axwwo user,pid,ppid,pgid,command

Process Privileges

Each process has a uid (user ID) and gid (group ID) that
identifies the user/group for the process.

Effective User ID (euid) — used when deciding a process’
access privileges.

Introduction 8/118

Inter-Process Communication

Sockets and pipes

Signals — asynchronous communication between processes.
When a process receives a signal, the process is interrupted
and a handler is invoked.

Remote Procedure Call (RPC) — One process invokes a
procedure in another process.

Introduction 9/118

Memory management

Stack High addresses

Heap

BSS (uninitialized)

Data (initialized)

Text (code) Low addresses

Each executing process’ address space is separated into five
regions.

Each region has access restrictions (read,execute,write).

The OS enforces address space boundaries between processes.

Introduction 10/118

Virtual memory

Virtual Page 1 Physical Page 1

Virtual Page 2 Physical Page 2

Virtual Page 3 Physical Page 3

Virtual Page 4 Physical Page 4

Virtual Page 5 Physical Page 5

Disk

Each process sees a virtual address space . Virtual pages are
mapped onto physical pages.
From the process’ point of view, memory is large and
contiguous.
Not currently needed pages are paged out to disk.

Introduction 11/118

Virtual memory. . .

Typical memory management system:

TLB miss

OffsetPage Frame

Physical Address

OffsetPage Index

Virtual Address

Page Tables TLB

TLB hit

On a memory access, the Memory Management Unit (MMU)
looks up real address from the virtual address.

On a TLB miss walk the page tables (slow), and update the
TLB with the new virtual-to-physical address mapping.

Introduction 12/118

Virtual machines

Guest OS 1 Guest OS 2 Guest OS 3

Hypervisor

Hardware

A Virtual Machine (VM) provides a simulated environment.

Hypervisor (Virtual Machine Monitor (VMM)) — software
layer that provides the environment.

Native virtualization — The VMM runs on the bare hardware.

Guest OS — the OS running inside the VM.

Introduction 13/118

Virtual machines. . .

Guest 1 Guest 2 Guest 3 Guest 4 Guest 5 Guest

Hypervisor 1 Hypervisor 2

Host

Hardware

Hosted virtualization — The VMM runs inside the Host OS .

Introduction 14/118

Implementing virtual machines — Advantages

Hardware efficiency — multiple OSs on the same machine.

Portability — snapshot the state of the OS and move to
other hardware.

Security — the guest OS runs in a sandbox , on a breach it is
easy to shut it down without affecting any other services.

Introduction 15/118

Implementing virtual machines — Emulation

Emulation — instructions are translated on-the-fly.

Linux operating system (to the left) booting inside the Bochs
x86 emulator (right) while running on a PowerPC Macintosh
computer.

Performance issues.

Introduction 16/118

Implementing virtual machines — Virtualization

Virtualization — Host and guest OSs run on the same
hardware.

Virtual and physical interfaces are matched.

The hypervisor can insert actions on system calls, for example.

Introduction 18/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Process Security 19/118

Process Security

We must monitor the processes running on a computer.

Our trust depends on all the processes that are running:
1 the first one when the computer starts up,
2 the processes it starts,
3 the processes they start,
4 . . .

Process Security 20/118

The Boot Sequence

BIOS

CPU Secondary Loader

OS

On system startup:
1 the BIOS firmware is executed;
2 the BIOS loadd the second-stage boot loader ;
3 the second-stage boot loader loads the rest of the OS;
4 control is passed to the OS.

A malicious user could take control at any point.

A BIOS password stops the second-stage boot loader from
executing.

Process Security 21/118

Hibernation

hibernate.mem

When hibernating, the OS stores the memory image to file.

Attack:
1 Restart the computer with a LiveCD.
2 Extract passwords etc. from hibernation file.

Defense: hard disk encryption.

Process Security 22/118

Event Logging and Process Monitoring

Monitor log files in /var/log for unusual events.

Monitor processes (MacOSX: Activity Monitor, Windows:
Process Explorer).

Detect attacks:
1 Locate malware with the same name as a real application, but

in the wrong location.

Process Security 23/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Authenticated boot 24/118

Authenticated boot

We’ve assumed the program executes in an untrusted
environment. The adversary can

1 examine (reverse engineer),
2 modify (tamper),
3 copy (pirate),

our program.

What if we could trust the client to run trusted
1 hardware,
2 operating system,
3 applications?

Authenticated (or trusted) boot : before you agree to
communicate with a system (to allow it to buy a program
from you, for example) you ask it to prove to you that it
won’t do anything bad.

Authenticated boot 25/118

Authenticated boot

Trusted Platform Module (TPM) — Some PCs (such as IBM
laptops) already have a TPM soldered onto the motherboard.

There are research systems built on top of the TPm to
provide trust.

However, at the present time, no actual deployed systems.

Authenticated boot 26/118

Authenticated boot: Scenario

1 You want your program to run on Bob’s computer.
2 Your program contains a secret, so you encrypt it.
3 You tell Bob to boot an operating system eOS that handles

encrypted executables.
4 But, is Bob actually running eOS? Could he be cheating?
5 Bob could tell you he booted into the version of eOS you gave

him, while in facthe first hacked it to leak the encryption keys.
6 You ask Bob compute a cryptographic hash over the kernel,

and send it to you. Unless he lies about the hash, you should
be fine!

7 Now, the kernel was started by a bootloader, and Bob could
have hacked it, to modify the eOS image before loading it.

8 So, you ask Bob to send you a hash of the bootloader.
9 Of course, the bootloader was started by the BIOS, and it

could have been hacked!
10 So, Bob sends you a hash of it, but. . .

Authenticated boot 27/118

Algorithm: Authenticated boot

Before you agree to communicate with a system you ask it to
prove to you that it won’t do anything bad.

Anything that’s running on Bob’s computer could, potentially,
affect whether you should trust it:

1 OS,
2 BIOS,
3 bootloader,
4 application programs,
5 firmware, . . .

Authenticated boot 28/118

Authenticated boot: Basic idea

The idea of trusted ¿boot is to measure every potentially
hostile piece of software running on a computer, and compare
it against a library of known-good-measurements .

Measure : “compute a cryptographic hash of”

Known-good-measurement : a hash of a program you trust.

If Bob can convince you that his computer, from the ground
up, only runs code you trust, then you should have no
problem handing him (or selling him) a program to run.

Authenticated boot 29/118

Authenticated boot

then
load

measure
then
load

measure
then
load

measure
then
load

measure

CRTM

kernel

BIOS

loader

Authenticated boot 30/118

Authenticated boot: Basic idea

At the very bottom of the stack of turtles there are two things
you need to trus:

1 Core Root of Trust Measurement (CRTM): piece of code
contained in the BIOS which measures itself and the BIOS,
before letting the BIOS execute.

2 Tamperproof Module : this is where the measurements are
stored.

The BIOS measures the bootloader, stores away the
measurement and lets the bootloader execute.

The bootloader measures the OS kernel, saves the result, and
loads the OS.

The OS measures kernel modules, configuration files, stores
them in the TPM, then lets applications run.

Authenticated boot 31/118

Secure boot vs. Authenticated boot

Secure boot : only ever boot a system consisting of code that
you trust.

Authenticated boot :

Bob can boot whatever system he wants!
But, he cannot lie about what system he’s booted!

Authenticated boot 32/118

Taking measurements

1 User hits power button.

2 The computer’s POST (Power On and Self Test) function is
invoked.

3 The BIOS is loaded and run.

4 The BIOS initializes the TPM.

5 The BIOS invokes the CRTM (contained inside the BIOS).

6 The CRTM compute a SHA-1 hash over the BIOS.

7 The BIOS compute a SHA-1 hash over the BootLoader.

8 The BIOS runs the BootLoader.

9 The BootLoader measures and calls the OSKernel.

10 The OSKernelh measures and calls an application.

Authenticated boot 33/118

Stored Measurement Lists

s t a t i c c l a s s OSKernel {
pub l i c s t a t i c L i n k e dL i s t [] SML;
pub l i c s t a t i c void run () {

SML = new L i n k e dL i s t [TPM. NumberOfPCRs] ;
f o r (i n t i =0; i<TPM. NumberOfPCRs ; i++)

SML[i] = new L i n k e dL i s t () ;
SML [0] . addLast (BIOS . BIOSHash) ;
SML [1] . addLast (BIOS . BootLoaderHash) ;
SML [2] . addLast (BIOS . OSKernelHash) ;
TPM. extend (10 ,TPM. SHA1(App l i c a t i o n . code)) ;
SML[1 0] . addLast (TPM.SHA1(App l i c a t i o n . code)) ;
TPM. extend (10 ,TPM. SHA1(App l i c a t i o n . i n pu t)) ;
SML[1 0] . addLast (TPM.SHA1(App l i c a t i o n . i n pu t)) ;
A p p l i c a t i o n . run () ;

}
}Authenticated boot 34/118

Stored Measurement Lists

Each measurement is stored in two places:
1 on the TPM (using the TPM.extend() call);
2 in the kernel in an array of lists, Stored Measurement List

(SML).

When you challenge the computer to prove that it’s benign it
will return the SML so that you can check that all the
measurements correspond to programs you trust.

The SML is stored in the kernel (not on the TPM) because it
could be large.

Authenticated boot 35/118

Stored Measurement Lists. . .

Just storing the hashes in the kernel isn’t enough — the
kernel could be malicious and lie about them!

The TPM thefore stores a “summary” of the hashes — a
“digest-of-the-digests” — in on-chip registers.

There are 16 Platform Configuration Registers (PCR), 20 bytes
long, the size of a SHA-1 hash.

Authenticated boot 36/118

The TPM

s t a t i c c l a s s TPM {
pub l i c s t a t i c f i n a l i n t NumberOfPCRs = 16;
pr i va te s t a t i c byte [] [] PCR ;
pub l i c s t a t i c void extend (i n t i , byte [] b) {

i n t l e n = 1 + PCR[i] . l e n g t h + add . l e n g t h ;
ubyte [] r e s = new byte [l e n] ;
r e s [0] = (byte) i ;
System . a r r a ycopy (

PCR[i] , 0 , r e s , 1 , PCR[i] . l e n g t h) ;
System . a r r a ycopy (

add , 0 , r es , PCR [i] . l eng th , add . l e n g t h) ;
return SHA1(r e s) ;

}
}

Authenticated boot 37/118

The TPM. . .

The extend(i,b) function doesn’t just assign a new value to
PCR[i].

It extends it by computing

PCR[i] = SHA1(i ‖ PCR[i] ‖ b).

Each PCR[i] register becomes a combination of all hashes
ever assigned to it and preserves the order in which the
measurements were added.

Authenticated boot 38/118

The TPM: Data and Functions

s t a t i c c l a s s TPM {
pr i va te s t a t i c KeyPai r EK ;
pr i va te s t a t i c byte [] [] PCR ;
pr i va te s t a t i c byte [] owne rSec r e t ;
pub l i c s t a t i c void extend (i n t i , byte [] b)
pub l i c s t a t i c Object [] quote (byte [] nonce)
pub l i c s t a t i c byte [] SHA1 (byte [] b)
pub l i c s t a t i c byte [] s ignRSA (

Object data , P r i v a t eKey key)
pub l i c s t a t i c KeyPai r generateRSAKeyPai r ()
pub l i c s t a t i c byte [] RND(i n t s i z e)
pub l i c s t a t i c void atManufactu re ()
pub l i c s t a t i c void takeOwnersh ip (

byte [] password)
pub l i c s t a t i c void POST()

}Authenticated boot 39/118

The TPM: Data and Functions

pub l i c s t a t i c void atManufactu re () {
EK = generateRSAKeyPai r () ;

}
pub l i c s t a t i c void takeOwnersh ip (

byte [] password) {
owne rSec r e t = password ;

}
pub l i c s t a t i c void POST() {

PCR = new byte [NumberOfPCRs] [] ;
f o r (i n t i =0; i<NumberOfPCRs ; i++)

PCR[i] = new byte [2 0] ;
}

Authenticated boot 40/118

The TPM: Data and Functions. . .

At manufacturing time the TPM gets a unique identity, an RSA
key pair (the Endorsement Key (EK)).

When the owner takes possession of the computer he gives
the TPM with a secret password.

At system startup time, the PCR registers are zeroed out.

Authenticated boot 41/118

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

nonce←RND()
send nonce

1.

kernelSML:

Client

0
1

15

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

receive nonce2.
nonce←RND()
send nonce

1.

kernelSML:

0
1

15

Server Client

SHA-1()

PCR[0]
PCR[1]

PCR[15]

3. send (quote,SML)

receive nonce2.
nonce←RND()
send nonce

1.

kernel

quote← sig{PCR, nonce}EKpriv

SML:

Client

...

Server

SHA-1()

EK

PCR[0]
PCR[1]

PCR[15]

3. send (quote,SML)

receive nonce2.
nonce←RND()
send nonce

1.

receive (quote,SML)4.

The Challenge

✞ ☎

pub l i c s t a t i c Object [] quote (byte [] nonce) {
Object [] data = { nonce ,PCR} ;
byte [] s i g = signRSA (data , EK . g e tP r i v a t e ()) ;
return new Object [] { nonce ,PCR, s i g } ;

}
✝ ✆

To avoid replay attacks, the challenger starts by creating a
random value, a nonce , and sends it in a challenge to the
computer.

The computer asks the TPM for a quote, i.e. the values of the
PCRs, signed with the endorsement private key EKpriv

(actually, a different key is used, for privacy reasons).

Authenticated boot 43/118

The Challenge. . .

The computer collects the stored measurement list SML,
packages it all up, and returns the package to the challenger.

The challenger looks up a certificate corresponding to the
TPM’s public key EKpub, and verifies that the TPM belongs to a
trusted computer.

The challenger validates the signature on the package it
received from the remote computer (only the TPM knows the
private key EKpriv).

The challenger walks through the stored measurement lists
and, merges the values together by simulating the TPM’s
extend() function. If the aggregate measurements match
those of the PCRs you can be sure that the SML wasn’t
tampered with.

Finally, check the measurements against a white- or blacklist.

Authenticated boot 44/118

Privacy issues

We said that the computer is using the endorsement key EK to
identify itself.

We lied.

Using the EK is a really bad idea because it has the potential
to compromise your privacy.

The EK public key uniquely identifies the TPM, and hence you.

You want the challenger to learn that you’re using a
TPM-enabled trusted platform but not which one, or else all
your transactions could be linked to each other.

Authenticated boot 45/118

Attestation Identity Key

Instead we use a special RSA keypair, the Attestation Identity
Key (AIK) that the TPM manufactures before engaging in the
challenge protocol.

No one knows that the AIK and the EK actually represent the
same computer, except a a trusted third party,the
Privacy Certification Authority , (PrivacyCA).

The PrivacyCA knows all the public keys EK pub of all
manufactured TPMs.

The computer and the PrivacyCA engage in a protocol to
manufacture an identity credential that the computer can use
to prove that it’s a compliant tamperproof platform, but
without revealing exactly who it is.

Authenticated boot 46/118

Protocol to manufacture an identity credential. . .

The computer holds three credentials:
1 endorsement credential — the TPM is genuine, the EKpub is

the public part of the endorsement keypair that was squirted
into it during manufacture (signed by the TPM manufacturer);

2 platform credential — the TPM and the motherboard it’s been
soldered onto make up a trusted system (signed by the
manufacturer of the platform);

3 conformance credential — the platform has been tested by a
third party and found to conform to certain security properties
(signed by a testing lab).

Authenticated boot 47/118

Protocol to manufacture an identity credential

.........

.........

.........

.........

.........

.........
.........

.........

.........

"A genuine TPM!"

signed,
infineon.com

Endorsement Cred

Computer

"A trusted TPM ID!"

signed,

Identity Cred

privacyCA.com

Platform Cred

"A genuine platform!"

intel.com

Endorsement Cred

Conformance Cred

signed, signed,

Conformance Cred

UL.com

"I tested it all!"

PrivacyCA

AIK

EK

EK pub = . . .

version=...

AIKpub = . . .

AIK ← makeIdentity ()

test results=...

Protocol to manufacture an identity credential. . .

To obtain an identity credential the computer
1 asks the TPM to manufacture a new AIK key-pair;
2 bundles up AIK pub together with all the credentials;
3 sends everything off to the PrivacyCA.

The PrivacyCA

1 convinces itself that the credentials belong to a genuinue
tamperproof platform;

2 issues the identity credential and returns it to the computer.

Authenticated boot 49/118

Social trust

The endorsement, platform, and conformance credentials are
published in the form of digital certificates.

The certificates are signed by companies willing to put their
good name behind a guarantee that a particular computer can
be trusted.

This is a form of social trust .

You trust that the companies which manufactured and tested
it are trustworthy.

If they didn’t take great care in ensuring that no security flaws
were allowed to creep in — their brand name could be
damaged.

Authenticated boot 50/118

Trusted third party limitation

Having to rely on a trusted third party (TTP) such as the
PrivacyCA is limiting:

1 the PrivacyCA will be involved in every transaction;
2 if the PrivacyCA’s security is compromised the identity of

every TPM will be revealed.

There are other protocols which avoid the TTP.

Authenticated boot 51/118

Controversies

Hatred for Digital Rights Management.

Privacy issues.

Technical doubts that authenticated boot has any hope of
succeeding in the real world.

Authenticated boot 52/118

Technical issues: IBM’s implementation

Database of measurements for Redhat Fedora: 25000
measurements.

A typical SML: 700-1000 measurements.

How to collect “good” measurements:
1 boot a “trusted system”
2 measure all modules, config files, scripts ⇒ whitelist of hashes

How to collect “bad” measurements:
1 boot a compromised system (root kits, trojans, . . .)
2 measure infected files ⇒ blacklist of hashes

How do we keep these lists up-to-date?!?!

Authenticated boot 53/118

Uses and Abuses

Help digital rights management players to run untampered on
PCs.

Before you’re allowed you to buy and download a movie, the
movie studio will verify that only approved software and
hardware is installed on your computer.

If you have the SoftICE debugger on your harddisk, or you’re
running an out-of-date kernel, or your media, you’re out of
luck.

If you are approved, the movie will be encrypted with your
public key AIKpub so that only an approved player running on
an approved OS on a computer with an approved TPM can
decrypt and play it.

Actually,the movie will now only play on your computer since
it’s been tied directly to your TPM.

Authenticated boot 54/118

Uses and Abuses. . .

If your OS happens to be localized to a part of the world
where the movie has yet to appear in theaters, the studio may
decide to refuse the download.

The OS can’t lie about any of the files on the harddisk,
including any configuration files, it can’t lie about in which
part of the world it’s running.

Authenticated boot 55/118

Sealing

Disney encrypts Nemo with a special sealing key Seal .

Seal depends on

the values in the PCRs
the TPM itself.

⇒ your friend with an identical computer can’t watch your
copy of Nemo!

If you reboot with slightly hacked OS

the PCRs will have changed
⇒ the Seal will be different
⇒ you can’t decrypt Nemo!

Microsoft could do the same to protect Office.

Authenticated boot 56/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Pioneer 57/118

Pioneer

In a very restricted environment you can measure aspects of
the untrusted client to verify that it is running the correct
software:

ClientServer
m()

C

C

Assume
1 The the client’s hardware configuration is known;
2 The client-server latency is known;
3 The client can only communicate with the server.

Applications:
1 Check cell phone/PDA/smartcard for viruses;
2 Check voting machine code;
3 Check for rootkits on machines on your LAN.

Pioneer 58/118

Pioneer. . .

Measure the untrusted client code:

Trusted site Untrusted site

response

challenge

took too long?

response OK?

compute

Assume a very restricted environment :
1 The the client’s hardware configuration is known;
2 The client-server latency is known;
3 The client can only communicate with the server.

Applications:
1 Check cell phone/PDA/smartcard for viruses;
2 Check voting machine code;
3 Check for rootkits on machines on your LAN.Pioneer 59/118

Pioneer: Protocol

Basic idea: ask client for a hash of its code.

If
1 the hash is the wrong value, or
2 the computation took too long

the client has cheated!

The hash function is constructed such that it can’t be
computed quicker.

Pioneer 60/118

Server Client

6.
send r

4.

send h
h← SHA-1(nonce||E)

executableE:

2.1.

send nonce

3.

if t2 − t1 > ∆t or

5.

FAIL

receive c

receive h

if h is wrong then

receive r7.

nonce←random()

t2 ←currentTime()

t1 ←currentTime()

FAIL
c is wrong then

receive nonce
c ← hash6(nonce, V)
send c

hash6()

send()

SHA-1()

V :

r ← execute E

Pioneer: Protocol

The hash function must be time optimal , if not

the client can use the time he saved to execute his own
instructions without the server noticing.

Others have tried to extend the protocol to general scenarios
— highly controversial .

Pioneer 62/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

XOM 63/118

Encrypted execution

Idea:

Encrypt the program.
Keep a (unique) secret key in the CPU.
Decrypt inside the CPU.

Protect algorithms (privacy)!

Protect from tampering (integrity)!

Protect from cloning (piracy)!

Assume the CPU cannot be tampered with.

XOM 64/118

XOM Overview

server

ALU

cacheDES

RSA

A
R

M
CPU

Kpriv

Ksym

EKsym
(P)

EKpub
(Ksym)

P

Kpub

XOM 65/118

XOM Overview. . .

1 To buy a program P from the server you start by handing it
your public RSA key Kpub.

2 Kpriv is stored inside your CPU.
3 The server generates a symmetric session key Ksym and

encrypts P .
4 It then encrypts the session key with Kpub.
5 The server creates a new executable file consisting of the

encrypted code and a file header containing the encrypted
session key, i.e.

[EKpub
(Ksym)‖EKsym

(P)].

6 You download this file and give it to the OS to execute.
7 The OS gives the CPU EKpub

(Ksym) and the CPU decrypts it
with Kpriv .

8 The CPU can now decrypt and execute the encrypted code.

XOM 66/118

XOM Overview. . .

The DES engine sits between external RAM and the cache so
that every piece of code or data that gets read or written will
first pass through it.

In other words:

external RAM is always encrypted,
internal data and code is always in the clear,
the private key Kpriv and the decrypted symmetric Ksym never
leave the CPU.

XOM 67/118

Encrypted execution — Consequences

Solves the copy protection problem — each program is tied to
one CPU!

Solves the privacy problem — code or data always encrypted
off-chip!

Solves the integrity problem — changing encrypted code is
hard!

Actually: There are still attacks!

XOM 68/118

The XOM architecture

Stanford design.

Never implemented in silicon.

Simulated in software.

Operating system, XOMOS, runs on top of it.

XOM 69/118

The XOM architecture — Compartments

Each process may run in different security mode.

Encrypted programs are slow!

Programs may switch between encrypted and cleartext
execution.

CPU has 4 Compartments :

logical containers
protect one process from being observed or modified by
another process.
the OS is untrusted: runs in its own compartment!

Even a severely subverted operating system won’t be allowed
to examine or manipulate another protected process!

XOM 70/118

The XOM architecture — Compartments

Compartment 0 : code runs unencrypted

ACTIVE register: current executing compartment

Session key table : Maps compartment ID to key.

Each register is tagged with compartment key.

Each cache line is tagged with compartment key.

On-chip data is in cleartext.

On cache flush: encrypt!

XOM 71/118

The XOM architecture — Example

ALUDES
CPU

RAM

session-key table

ID session-key

0 --------

1 Asym

2 Bsym

3 --------

register file

reg contents tag

r0 42 0

r1 67 2

r2 314 2

r3 218 1

cache

addr cache line tag

0

1 I1 2

2 I2 1

3 D1 2

ACTIVE

2

Currently, two programs A and B are running.

XOM 72/118

The XOM architecture — Example. . .

Two compartments, 1 and 2, for programs A and B .

Compartment 2 is the currently active.

Session-key table: 1 7→ Asym, 2 7→ Bsym.

Registers r1 and r2 belong to compartment 2, register r3 to
compartment 1.

Register r0 is unprotected ⇒ compartments 1 and 2 could
use r0 for insecure communication.

XOM 73/118

The XOM architecture — Example. . .

RAM

CPU

addr contents

0

1 Bsym(I1‖CRC (I1))
2 Asym(I2‖CRC (I2))
3 Bsym(D1‖CRC (D1))

XOM 74/118

The XOM architecture — Example

The CPU tries to load data value D1 at address 3 into register r0:

1 Look in the cache line: empty!

2 Cache miss, read Bsym(D1‖CRC (D1)) from address 3.

3 Look up key for the active compartment: Bsym.

4 Decrypt the cache-line!

5 Adversary could have swapped D1it for another encrypted
value from some other part of the code!

Store CRC hash of each cache line.
If CRC doesn’t match ⇒ exception!
Otherwise, load D1 into register r0
Set r0’s tag to 2.

XOM 75/118

The XOM architecture — ISA modifications

secure load reg, addr :

On a cache-miss, load the cache-line at address
addr.
Decrypt using the session key of the currently
active process.
If the hash doesn’t validate, throw an exception.
Store the decrypted value in reg
Tag reg with the tag of the active process.

XOM 76/118

The XOM architecture — ISA modifications. . .

secure store reg, addr :

reg’s tag 6= active tag, exception!
Store reg to addr’s cache-line
Set the cache mine tag to the tag of the active
process.
On a cache-flush:

1 Compute a hash of the cache line and its virtual
memory address,

2 Encrypt the cache-line and the hash with the
session key,

3 Write to memory.

XOM 77/118

The XOM architecture — ISA modifications. . .

Insecure load and store instructions work on data in the null
compartment:

load reg, addr :

1 Load the value at address addr into register reg
2 Set its tag to 0.

store reg, addr :

1 If reg isn’t tagged with 0, exception!
2 Write it to address addr.

XOM 78/118

The XOM architecture — ISA modifications. . .

move to null reg : If reg’s tag is different from the active tag,
throw an exception. Otherwise, set reg’s tag to 0.

move from null reg : If reg’s tag is isn’t 0, throw an exception.
Otherwise, set reg’s tag to the tag of the currently
active process.

The OS needs to move data from a device into a user process.

Two processes can insecurely exchange data: process 1 loads
the data into a register, changes its tag to 0, process 2
changes the tag from 0 to its own tag value.

XOM 79/118

The XOM architecture — ISA modifications. . .

Enter and exit protected mode:

enter addr : The encrypted session-key is stored at address addr.
If it’s already been loaded into a slot in the
session-key table, just set the ACTIVE register to the
slot tag. Otherwise, load the key, decrypt it with the
CPU’s private key, store into an empty slot in the
session-key table, and set the ACTIVE register. Start
fetching and decrypting instructions.

exit: Set ACTIVE to 0. Stop decrypting instructions.

XOM 80/118

Attack: Replay!

The adversary can save a value from a particular location and
then later write it back into the same location!

Check that a value you write into memory hasn’t been
changed the next time you read from the same location.

XOM 81/118

Replay attacks — Merkle Tree

HH

CPU

A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

H
A
S
HH

S
A
H H

A
S
H

A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

A
S
H H

S
A
H

H
A
S
H

H
A
S
H

H
A
S
H

H
A
S
H

R
A
M

HASH

cache H

Write to memory ⇒ update the hashes up to the root.
Read from memory ⇒ verify the hashes from the leaf to the
root.

XOM 82/118

Replay attacks — Merkle Tree. . .

The leaves of the tree are chunks of memory that you want to
protect.

Internal nodes are hashes of child nodes.

The root of the tree is a hash stored protected on the CPU.

A reply attack won’t work: the attacker can change a word in
memory, and the hash of the word, and the hash of the hash
— but not the root!

XOM 83/118

Replay attacks — Merkle Tree. . .

Performance. . .

Extra space: 1
4th of memory is taken up by hashes.

Extra cost in memory bandwidth: a balanced m-ary tree of
memory of size N ⇒ logm(N) hash checks per read.

Solution: cache parts of the tree on chip in the L2 cache ⇒
only 20% performance hit.

XOM 84/118

Attack: Watching the address bus!

OK, so maybe the adversary can’t directly examine an
executable since it’s encrypted.

He may still be able to extract information from it by
examining its control flow execution pattern.

In this attack the adversary examines the addresses going
across the bus.

XOM 85/118

Modular exponentiation routine

Consider the modular exponentiation routine used in RSA and
Diffie-Hellman.

x is the private key, w bits long.

In the XOM architecture code and data doesn’t move.

Blocks of code are encrypted but reside in the same location
in memory throughout execution.

XOM 86/118

Modular exponentiation routine. . .

✞ ☎

s [0] = 1 ;
f o r (k=0; k<w ; k++) {

i f (x [k] == 1)
R [k] = (s [k]∗ y) mod n ;

e l s e

R[k] = s [k] ;
s [k+1] = R[k]∗R[k] mod n

}
return R[w−1] ;

✝ ✆

s[0]=1
k=0

if (k<w)

if (x[k]==1) return R[w−1]

R[k]=s[k]R[k]=(s[k]*y) mod n

s[k+1]=R[k]*R[k] mod n
k++
goto B1

B0 :

B1 :

B2 :B6 :

B4 :B3 :

B5 :

XOM 87/118

Examining runtime execution patterns

The encrypted blocks could be laid out in memory like this:

000 100 200 300 400 500 600

Ek(B0) Ek(B1) Ek(B2) Ek(B3) Ek(B4) Ek(B5) Ek(B6)

An adversary monitors the address bus while a secret message
is being decrypted would see:

〈000,
100, 200, 300, 500,
100, 200, 300, 500,
100, 200, 400, 500,
100, 200, 300, 500,

· · ·
100,

600〉

XOM 88/118

Examining runtime execution patterns

The adversary can draw several conclusions:
1 There’s a loop involving B1 and B5.
2 From B2 control either goes to B3 or B4, and from B3 and B4

we always proceed to B5 ⇒ if-then-else-statement!
3 Reconstruct the control-flow graph!
4 Pattern-match to see that this is the modular exponentiation

routine!

He still doesn’t know what’s inside the blocks.

Examine the trace:

A branch B2 → B3 ⇒ a 0!
A branch B2 → B4 ⇒ a 1!
(or possibly the opposite).

XOM 89/118

Side-channel attacks

This is a form of a side-channel attack .

Variants to distinguish between B3 and B4:

use execution time,
use energy consumption.

Noisy data: run multiple experiments.

XOM 90/118

Side-channel attacks. . .

Our own measurements are watching addresses go by on the
address bus.

These can be noisy too.

For example,if a routine is small enough to at least partially fit
in on-chip caches, then some branches will not be exposed!

The adversary can turn off caching alltogether.

On the Intel X86: set bit 30 of status register CR0.

So, we can assume that all branches are exposed.

XOM 91/118

Fixing a leaky address bus!

Idea: blocks must be constantly permuted in memory!

CPU has a shuffle buffer that keeps some memory blocks.

When a block is needed from memory it’s swapped with a
random block from the shuffle buffer.

A block is a cache line.

In other words:
1 a block M is read from memory,
2 a block S is selected randomly from the shuffle buffer,
3 M replaces S in the buffer,
4 S is written back to M ’s location.

XOM 92/118

Shuffle Buffer Example

s[0]=1
k=0

if (k<w)

if (x[k]==1) return R[w−1]

R[k]=s[k]R[k]=(s[k]*y) mod n

s[k+1]=R[k]*R[k] mod n
k++
goto B1

B0 :

B1 :

B2 :B6 :

B4 :B3 :

B5 :

7 blocks from our example program, all residing in memory.

The CPU has a 3-slot shuffle buffer.

XOM 93/118

Shuffle Buffer Example. . .

First, three blocks are selected from memory and brought in to
populate the shuffle buffer.

STEP shuffle buffer memory

1 B0 B1 B2 B3 B4 B5 B6

2 B0 B1 B2 B3 B4 B5 B6

XOM 94/118

Shuffle Buffer Example. . .

Next, B4 is needed so it’s brought in from memory, replaces block
B1 which was selected randomly from the shuffle buffer, and B1 is
written back to memory, in B4’s place:

STEP shuffle buffer memory

3 B0 B4 B2 B3 B1 B5 B6

XOM 95/118

Shuffle Buffer Example. . .

Next, B0 is swapped with B6, B4 with B5, and, finally, as the
program is finishing executing, the blocks in the buffer are written
back to memory:

STEP shuffle buffer memory

4 B6 B4 B2 B3 B1 B5 B0

5 B6 B5 B2 B3 B1 B4 B0

6 B6 B5 B2 B3 B1 B4 B0

XOM 96/118

Shuffle Buffer Architecture

buffer

A
M

300 500100 200 400000 600

1 2 3 4 5 60

600 400 SB2 300 500 SB1 SB0

controller

BAT cache

SB0

SB1

SB2

CPU

BAT:

cache shuffle

R

Ek (B4)Ek (B1) Ek (B0)Ek (B3)

Ek (B6)

Ek (B5)

Ek (B2)

XOM 97/118

Shuffle Buffer Architecture. . .

The Block Address Table (BAT) keeps track of where blocks
currently reside (address in memory or shuffle buffer index).

On a cache miss, the controller queries the BAT for the
current location of the block. If the block is in the shuffle
buffer already, it’s returned to the cache. If, on the other
hand, it’s in memory, it’s loaded and stored in both the cache
and the shuffle buffer.

Whatever block was evicted from the buffer gets written back
to the location of the loaded block.

An on-chip BAT cache reduces the latency of checking the
BAT.

XOM 98/118

Attack: Watching the data bus!

After a while our adversary has noticed that blocks are being
continuously relocated.

So, he gets tired of watching the address bus.

Then can take to watching the data bus intead!

XOM 99/118

Example

Assume these cipher-texts:

000 100 200 300 400 500 600

Ek(B0) = Ek (B1) = Ek(B2) = Ek(B3) = Ek(B4) = Ek (B5) = Ek(B6) =
0000 1000 2000 3000 4000 5000 6000

Watch the cipher-texts going past on the data bus!

〈0000,
1000, 2000, 3000, 5000,
1000, 2000, 3000, 5000,
1000, 2000, 4000, 5000,
1000, 2000, 3000, 5000,

· · ·
1000,

6000〉

XOM 100/118

Fixing a leaky data bus

Watching the blocks go by on the data bus reveals as much as
watching addresses go by on the address bus!

Easy to fix:

When a block is written back to a new location make sure that
it has a different ciphertext.
⇒ xor the cleartext block with its new address prior to
encrypting it.

XOM 101/118

The XOM architecture — Discussion

If you really want to protect your program you have to make
sure that you hide everything that’s going on inside the CPU
and you have to protect every piece of code and data that
gets stored off-chip.

You cannot
1 leak any information in the address stream,
2 leak any information on the data bus,
3 can’t let the adversary change or replay a single bit in memory

without you detecting it.

Performance. . .

system-on-a-chip : If the CPU and RAM both reside in the
same physical capsule then there’s no need to worry about
anyone snooping on the bus.

XOM 102/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Filesystem Security 103/118

Virtual Memory Security

On some systems, a swap file holds all virtual memory pages.

Attack:
1 Abruptly power down the computer;
2 Re-boot with a LiveCD;
3 Search swap file for passwords, keys, etc.

Defense: Don’t store passwords in cleartext in memory.

Filesystem Security 104/118

Linux permissions

See the book!

Filesystem Security 105/118

SetUID

To change password:
1 run the passwd program;

2 change /etc/passwd file.

But, processes inherit the permissions of their parents, thus:
1 passwd runs with the user’s privileges!
2 /etc/passwd is owned by root!

Filesystem Security 106/118

SetUID. . .

Unix permissions include a setuid bit.

If prog has setuid=1 ⇒

prog runs with effective uid (euid) of its owner.

Example:
1 passwd is owned by root.
2 passwd has setuid=1.
3 Bob runs passwd.
4 Bob’s passwd process runs with root permissions.
5 ⇒ Bob can change /etc/passwd!

Filesystem Security 107/118

SetUID: Issues

Attack:
1 Bob makes setuid program run arbitrary code.
2 ⇒ Bob gets privileges of the program’s owner!

Privilege escalation scenario.

setuid programs must be safe!

Filesystem Security 108/118

SetUID: Example

s t a t i c u i d t eu id , u i d ;

i n t main (i n t argc , char ∗ a rgv []) {
u i d = ge t u i d () ;
eu i d = ge t eu i d () ;
s e t e u i d (u i d) ; // Drop p r i v i l e g e s
// Do someth ing . . .
s e t e u i d (eu i d) ; // Ra i s e p r i v i l e g e s
FILE ∗ f i l e = fopen (”/ va r / l og ” , ”a”) ;
s e t e u i d (u i d) ; // Drop p r i v i l e g e s
f p r i n t f (f i l e , ” . . . ”) ; // p r i n t u s i n g p e rm i s s i o n s o f owner !
f c l o s e (f i l e) ;
return 0 ;

}

Filesystem Security 109/118

SetUID: Example. . .

The example program runs with the user’s permissions, most
of the time.

It raises permissions to the owner’s in order to write to the log
file.

Filesystem Security 110/118

SetUID: Vulnerability

i n t main () {
system (” l s ”) ;
return 0 ;

}

Assume this program has setuid=1.

system() invokes /bin/sh.

The shell is told to execute "ls".

But, the shell uses the PATH variable to look up "ls"!

⇒ The user can manipulate PATH to make system execute the
wrong program.

Defense: system("/usr/bin/ls").

Filesystem Security 111/118

File descriptors

open("filename",read/write/append/...):
1 kernel checks if the process has the right permissions;
2 kernel opens the file;
3 kernel returns a file descriptor .

write(file descriptor,"..."):
1 kernel checks that the file descriptor has write

permissions.
2 kernel writes, or returns error.

Filesystem Security 112/118

File descriptors. . .

NOTE: The OS only checks read/write/. . . permissions on
open!

NOTE: On read()/write() calls, the OS only checks the
file descriptor was opened with those permissions!

NOTE: File descriptors can be passed between processes!

NOTE: Child processes inherit open file descriptors from
parents!

Filesystem Security 113/118

File descriptor leaks

i n t main (i n t argc , char ∗ a rgv []) {
FILE ∗pw = fopen (”/ e t c / passwd” , ” r ”) ;
// Read passwords . . .
// Ooops , f o r g o t to c l o s e pw !
e x e c l (”/home/bob/ s h e l l ” , ” s h e l l ” ,NULL) ;

}

Bob’s child process inherits open file descriptors.

He can use fcntl() functions to access the open file.

Filesystem Security 114/118

Symbolic links

ln -s source-file target-file:
A symbolic link points to the original copy.

open("filename",read/write/append/..., flags):
O NOFOLLOW: do not follow symlinks
O SYMLINK: allow open of symlinks

✞ ☎

i n t main (i n t argc , char ∗ a rgv []) {
i f (st rcmp (a rgv [1] , ”/ e t c /passwd”)==0)

abo r t () ;
e l s e {

FILE ∗pw = fopen (a rgv [1] , ” r ”) ;
. . .

}
}

✝ ✆

The attacker could pass a symlink to /etc/passwd instead. . .

Filesystem Security 115/118

Outline

1 Introduction
Processes
Inter-Process Communication
Memory management
Virtual machines

2 Process Security
3 Authenticated boot

Trusted boot
Taking measurements
The TPM
The challenge
Privacy issues
Applications and Controversies

4 Pioneer
5 XOM

The XOM architecture
Preventing replay attacks
Fixing a leaky address bus
Fixing a leaky data bus
Discussion

6 Filesystem Security
SetUID
File Descriptors
Symbolic Links

7 Summary

Summary 116/118

Readings and References

Chapter 3 in Introduction to Computer Security, by Goodrich
and Tamassia.

Section 9.7.3 in Introduction to Computer Security, by
Goodrich and Tamassia.

Summary 117/118

Acknowledgments

Material and exercises have also been collected from these sources:

1 Christian Collberg, Jasvir Nagra, Surreptitious Software,
Obfuscation, Watermarking, and Tamperproofing for Software
Protection,
http://www.amazon.com/Surreptitious-Software-Obfuscation-Watermarking-Tamperproofing/dp/0321549252.

2 Lie, Thekkath, Mitchell, Lincoln, Boneh, Mitchell, Horowitz,
Architectural support for copy, tamper resistant software,
ASPLOS-IX, 2000.

3 Zhuang, Zhang, Pande, HIDE: an infrastructure for efficiently
protecting information leakage on the address bus,
ASPLOS-XI, 2004.

4 Gomathisankaran, Architecture Support for 3D Obfuscation,
IEEE Trans. Comput., Vol. 55, No. 5, pp. 497–507, 2006.

Summary 118/118

http://www.amazon.com/Surreptitious-Software-Obfuscation-Watermarking-Tamperproofing/dp/0321549252

	Introduction
	Processes
	Inter-Process Communication
	Memory management
	Virtual machines

	Process Security
	Authenticated boot
	Trusted boot
	Taking measurements
	The TPM
	The challenge
	Privacy issues
	Applications and Controversies

	Pioneer
	XOM
	The XOM architecture
	Preventing replay attacks
	Fixing a leaky address bus
	Fixing a leaky data bus
	Discussion

	Filesystem Security
	SetUID
	File Descriptors
	Symbolic Links

	Summary

