CSc466/566 Computer Security
 Midterm Exam Cheat-Sheet

Christian Collberg

Mon Mar 19, 2012

A Cheat-Sheet

A. 1 Modular Arithmetic

$(a+b) \bmod n=((a \bmod n)+(b \bmod n)) \bmod n$ $(a-b) \bmod n=((a \bmod n)-(b \bmod n)) \bmod n$ $(a * b) \bmod n=((a \bmod n) *(b \bmod n)) \bmod n$

$$
x^{y} \bmod n=\overbrace{x * x * \cdots * x}^{y} \bmod n
$$

A. 2 Exponents/Powers

$$
\begin{aligned}
x^{a} x^{b} & =x^{(a+b)} \\
x^{a} y^{a} & =(x y)^{a} \\
\left(x^{a}\right)^{b} & =x^{(a b)} \\
x^{\left(\frac{a}{b}\right)} & =\sqrt[b]{x^{a}} \\
x^{(a-b)} & =\frac{x^{a}}{x^{b}} \\
x^{-a} & =\frac{1}{x^{a}}
\end{aligned}
$$

A. 3 Logarithms

$$
\begin{aligned}
y & =\log _{b}(x) \text { iff } x=b^{y} \\
\log _{b}(1) & =0 \\
\log _{b}(b) & =1 \\
\log _{b}(x y) & =\log _{b}(x)+\log _{b}(y) \\
\log _{b}\left(\frac{x}{y}\right) & =\log _{b}(x)-\log _{b}(y) \\
\log _{b}\left(x^{n}\right) & =n \log _{b}(x) \\
\log _{b}(x) & =\log _{b}(c) \log _{c}(x)=\frac{\log _{c}(x)}{\log _{c}(b)}
\end{aligned}
$$

A. 4 Basic Theorems

Theorem 1 (Euler) Let x be any positive integer that's relatively prime to the integer $n>0$, then $x^{\phi(n)} \bmod n=1$.

Theorem 2 (Corollary to Euler's theorem)
Let x be any positive integer that's relatively prime to the integer $n>0$, and let k be any positive integer, then $x^{k} \bmod n=x^{k \bmod \phi(n)} \bmod n$.

Theorem 3 (Bezout's identity) Given any integers a and b, not both zero, there exist integers i and j such that $\operatorname{GCD}(a, b)=i a+j b$.

Theorem 4 (Corollary to Euler's theorem)
Given two prime numbers p and q, integers $n=p q$ and $0<m<n$, and an arbitrary integer k, then $m^{k \phi(n)+1} \bmod n=$ $m^{k(p-1)(q-1)+1} \bmod n=m \bmod n$.

Theorem 5 (Fermat's Little Theorem)
Let p be a prime number and g any positive integer $g<p$, then $g^{p-1} \bmod p=1$.

A. 5 GCD

func $\operatorname{gcd}($ int a, int $b):($ int, int, int $)=$ if $b=0$ then return $(a, 1,0)$
$q \leftarrow\lfloor a / b\rfloor$
$(d, k, l) \leftarrow \operatorname{gcd}(b, a \bmod b)$ return $(d, l, k-l q)$

- Use GCD to compute modular multiplicative inverses. Given $x<n$, we want to compute $y=x^{-1} \bmod n$, i.e. $y x \bmod n=$

1. The inverse of x in Z_{n} exists when $\operatorname{GCD}(n, x)=1$.

- Calculate $\operatorname{GCD}(n, x)=(1, i, j)$ such that $1=i x+j n$. Then $(i x+j n) \bmod n=$ $i x \bmod n=1$ and i is x 's multiplicative inverse in Z_{n}.

A. 6 RSA

- Bob (Key generation):

1. Generate two large random primes p and q.
2. Compute $n=p q$.
3. Select a small odd integer e relatively prime with $\phi(n)$.
4. Compute $\phi(n)=(p-1)(q-1)$.
5. Compute $d=e^{-1} \bmod \phi(n)$.

- $P_{B}=(e, n)$ is Bob's RSA public key.
- $S_{B}=(d, n)$ is Bob' RSA private key.
- Alice (encrypt and send a message M to Bob):

1. Get Bob's public key $P_{B}=(e, n)$.
2. Compute $C=M^{e} \bmod n$.

- Bob (decrypt a message C received from Alice):

1. Compute $M=C^{d} \bmod n$.

A. 7 Diffie-Hellman Key Exchange

1. All parties (set-up):
(a) Pick p, a prime number.
(b) Pick g, a generator for Z_{p}.
2. Alice:
(a) Pick a random $x \in Z_{p}, x>0$.
(b) Compute $X=g^{x} \bmod p$.
(c) Send X to Bob.
3. Bob:
(a) Pick a random $y \in Z_{p}, x>0$.
(b) Compute $Y=g^{y} \bmod p$.
(c) Send Y to Alice
4. Alice computes the secret: $K_{1}=Y^{x} \bmod p$.
5. Bob computes the secret: $K_{2}=X^{y} \bmod p$.

A. 8 Elgamal Encryption

- Bob (Key generation):

1. Pick a prime p.
2. Find a generator g for Z_{p}.
3. Pick a random number x between 1 and $p-2$.
4. Compute $y=g^{x} \bmod p$.

- $P_{B}=(p, g, y)$ is Bob's RSA public key.
$-S_{B}=x$ is Bob' RSA private key.
- Alice (encrypt and send a message M to Bob):

1. Get Bob's public key $P_{B}=(p, g, y)$.
2. Pick a random number k between 1 and $p-2$.
3. Compute the ciphertext $C=(a, b)$:

$$
\begin{aligned}
a & =g^{k} \bmod p \\
b & =M y^{k} \bmod p
\end{aligned}
$$

- Bob (decrypt a message $C=(a, b)$ received from Alice):

1. Compute $M=b\left(a^{x}\right)^{-1} \bmod p$.

A. 9 RSA Signature Scheme

- Bob (Key generation): As before.
- $P_{B}=(e, n)$ is Bob's RSA public key.
- $S_{B}=(d, n)$ is Bob' RSA private key.
- Bob (sign a secret message M):

1. Compute $S=M^{d} \bmod n$.
2. Send M, S to Alice.

- Alice (verify signature S received from Bob):

1. Receive M, S from Alice.
2. Verify that $M \stackrel{?}{=} S^{e} \bmod n$.

A. 10 Elgamal Signature Scheme

- Alice (Key generation): As before.

1. Pick a prime p.
2. Find a generator g for Z_{p}.
3. Pick a random number x between 1 and $p-2$.
4. Compute $y=g^{x} \bmod p$.

- $P_{A}=(p, g, y)$ is Alice's RSA public key.
$-S_{A}=x$ is Alice' RSA private key.
- Alice (sign message M and send to Bob):

1. Pick a random number k.
2. Compute the signature $S=(a, b)$:

$$
\begin{aligned}
a & =g^{k} \bmod p \\
b & =k^{-1}(M-x a) \bmod (p-1)
\end{aligned}
$$

- Bob (verify the signature $S=(a, b)$ received from Alice):

1. Verify $y^{a} \cdot a^{b} \bmod p \stackrel{?}{=} g^{M} \bmod p$.
