
CSc466/566 Computer Security

Midterm Exam Cheat-Sheet

Christian Collberg

Mon Mar 19, 2012

A Cheat-Sheet

A.1 Modular Arithmetic

(a + b) mod n = ((a mod n) + (b mod n)) mod n

(a− b) mod n = ((a mod n)− (b mod n)) mod n

(a ∗ b) mod n = ((a mod n) ∗ (b mod n)) mod n

xy mod n =

y
︷ ︸︸ ︷
x ∗ x ∗ · · · ∗ x modn

A.2 Exponents/Powers

xaxb = x(a+b)

xaya = (xy)a

(xa)b = x(ab)

x(a

b
) = b
√

xa

x(a−b) =
xa

xb

x−a =
1

xa

A.3 Logarithms

y = logb (x) iffx = by

logb (1) = 0

logb (b) = 1

logb (xy) = logb (x) + logb (y)

logb

(
x

y

)

= logb (x)− logb (y)

logb (xn) = n logb (x)

logb (x) = logb (c) logc (x) =
logc (x)

logc (b)

A.4 Basic Theorems

Theorem 1 (Euler) Let x be any positive in-

teger that’s relatively prime to the integer n > 0,
then xφ(n) mod n = 1.

Theorem 2 (Corollary to Euler’s theorem)
Let x be any positive integer that’s relatively

prime to the integer n > 0, and let k be any posi-

tive integer, then xk mod n = xk mod φ(n) mod n.

Theorem 3 (Bezout’s identity) Given any

integers a and b, not both zero, there exist in-

tegers i and j such that GCD(a, b) = ia + jb.

Theorem 4 (Corollary to Euler’s theorem)
Given two prime numbers p and q, integers

n = pq and 0 < m < n, and an arbi-

trary integer k, then mkφ(n)+1 mod n =
mk(p−1)(q−1)+1 mod n = m mod n.

Theorem 5 (Fermat’s Little Theorem)
Let p be a prime number and g any positive

integer g < p, then gp−1 mod p = 1.

A.5 GCD

func gcd (i n t a , i n t b) : (in t , in t , i n t) =
i f b = 0 then

return (a, 1, 0)
q ← ⌊a/b⌋
(d, k, l)← gcd(b, a mod b)
r eturn (d, l, k − lq)

• Use GCD to compute modular multiplica-
tive inverses. Given x < n, we want to
compute y = x−1 mod n, i.e. yx mod n =

1

1. The inverse of x in Zn exists when
GCD(n, x) = 1.

• Calculate GCD(n, x) = (1, i, j) such that
1 = ix + jn. Then (ix + jn) mod n =
ix mod n = 1 and i is x’s multiplicative in-
verse in Zn.

A.6 RSA

• Bob (Key generation):

1. Generate two large random primes p
and q.

2. Compute n = pq.
3. Select a small odd integer e relatively

prime with φ(n).
4. Compute φ(n) = (p − 1)(q − 1).
5. Compute d = e−1 mod φ(n).

– PB = (e, n) is Bob’s RSA public key.
– SB = (d, n) is Bob’ RSA private key.

• Alice (encrypt and send a message M to
Bob):

1. Get Bob’s public key PB = (e, n).
2. Compute C = Me mod n.

• Bob (decrypt a message C received from Al-
ice):

1. Compute M = Cd mod n.

A.7 Diffie-Hellman Key Exchange

1. All parties (set-up):

(a) Pick p, a prime number.
(b) Pick g, a generator for Zp.

2. Alice:

(a) Pick a random x ∈ Zp, x > 0.
(b) Compute X = gx mod p.
(c) Send X to Bob.

3. Bob:

(a) Pick a random y ∈ Zp, x > 0.
(b) Compute Y = gy mod p.
(c) Send Y to Alice

4. Alice computes the secret: K1 = Y x mod p.
5. Bob computes the secret: K2 = Xy mod p.

A.8 Elgamal Encryption

• Bob (Key generation):

1. Pick a prime p.
2. Find a generator g for Zp.
3. Pick a random number x between 1

and p− 2.
4. Compute y = gx mod p.

– PB = (p, g, y) is Bob’s RSA public key.
– SB = x is Bob’ RSA private key.

• Alice (encrypt and send a message M to
Bob):

1. Get Bob’s public key PB = (p, g, y).
2. Pick a random number k between 1

and p− 2.
3. Compute the ciphertext C = (a, b):

a = gk mod p

b = Myk mod p

• Bob (decrypt a message C = (a, b) received
from Alice):

1. Compute M = b(ax)−1 mod p.

A.9 RSA Signature Scheme

• Bob (Key generation): As before.

– PB = (e, n) is Bob’s RSA public key.
– SB = (d, n) is Bob’ RSA private key.

• Bob (sign a secret message M):

1. Compute S = Md mod n.
2. Send M,S to Alice.

• Alice (verify signature S received from
Bob):

1. Receive M,S from Alice.

2. Verify that M
?
= Se mod n.

A.10 Elgamal Signature Scheme

• Alice (Key generation): As before.

1. Pick a prime p.
2. Find a generator g for Zp.
3. Pick a random number x between 1

and p− 2.

2

4. Compute y = gx mod p.

– PA = (p, g, y) is Alice’s RSA public
key.

– SA = x is Alice’ RSA private key.

• Alice (sign message M and send to Bob):

1. Pick a random number k.
2. Compute the signature S = (a, b):

a = gk mod p

b = k−1(M − xa) mod (p− 1)

• Bob (verify the signature S = (a, b) received
from Alice):

1. Verify ya · ab mod p
?
= gM mod p.

3

