
CSc 466/566

Computer Security

10 : Operating Systems — Application Security
Version: 2012/03/27 13:30:01

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/61

collberg@gmail.com

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Introduction 2/61

Introduction

Programmers tend to avoid

checking for error conditions that rarely happen;
checking for boundary conditions to save time ;
checking user input to make sure it’s valid.

Such programming errors can be exploited in a
privilege escalation attack.

Introduction 3/61

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Arithmetic Overflow 4/61

Arithmetic Overflow

Integers typically have fixed size.

Programmers typically don’t check for overflow conditions.

Java doesn’t throw exceptions for integer overflow/underflow!

Arithmetic Overflow 5/61

Example

Code to grant access to the first 5 users who try to connect:
✞ ☎

i n t main () {
uns i gned i n t conn e c t i on s = 0 ;
// network code
conn e c t i on s ++;
i f (connec t i on s <5)

g r a n t a c c e s s () ;
e l s e

deny a c c e s s () ;
}

✝ ✆

Arithmetic Overflow 6/61

Example — Attack

✞ ☎

conn e c t i on s ++;
i f (connec t i on s <5)

g r a n t a c c e s s () ;
e l s e

deny a c c e s s () ;
✝ ✆

Attack:

1 make a huge number of connections;

2 wait for the counter to overflow;

3 gain access!

Arithmetic Overflow 7/61

Example — Safe Programming Practices

✞ ☎

i n t main () {
uns i gned i n t conn e c t i on s = 0 ;
// network code
i f (connec t i on s <5)

conn e c t i on s ++;
i f (connec t i on s <5)

g r a n t a c c e s s () ;
e l s e

deny a c c e s s () ;
}

✝ ✆

Arithmetic Overflow 8/61

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Buffer Overflow 9/61

Introduction

Buffer overflow attacks explained with beer!
http://www.youtube.com/watch?v=7LDdd90aq5Y

What is a buffer overflow attack?

Why are they possible?

How do I perform a buffer overflow attack?

How do I prevent a buffer overflow attack?

Buffer Overflow 10/61

http://www.youtube.com/watch?v=7LDdd90aq5Y

Definitions

buffer : A span of contiguous writable memory.

stack frame : The space on the stack alotted to a particular
procedure.

buffer overflow : Writing past the declared bounds of a buffer.

buffer overflow attack :

A method of gaining control of a system by executing some
program/procedure with more data than it is prepared to
handle.
The extra data is designed to cause malicious side effects.

Buffer Overflow 11/61

Stack layout

The execution stack of a program (on an x86 machine) grows
downward (to lower memory addresses) as procedures are
called.

Information is placed in stack frames.

Among the things stored on the stack are

the local and formal variables,
the return address, and
the frame pointer of the procedure.

The positions of these values in memory are shown on the
next slide:

Buffer Overflow 12/61

Stack layout. . .

✞ ☎

void f u n c t i o n (i n t a , i n t b){
i n t c ;
i n t d ;

}
✝ ✆

b High addresses, bottom of stack

a

return address

fp

c

d Low addresses, top of stack

Buffer Overflow 13/61

Basic idea

If we could overwrite the return address of a procedure with a
different address, then when the procedure returned it would
jump wherever we wanted.

How do we find the return address?
1 declare a local variable, anchor;
2 take its address;
3 add an increasing offset to anchor;
4 overwrite this new address with the address of payload;
5 return;
6 did we go to payload?

Buffer Overflow 14/61

Example: changing the return address

ret.c:
✞ ☎

void pay load (){}
#de f i n e OFFSET (HERE)
i n t f oo (){

v o l a t i l e long anchor=−1;
void (∗ v) () = &pay load ;
v o l a t i l e long ∗ a = &anchor ;
a = (v o l a t i l e long ∗) ((long) a + (long)OFFSET) ;
∗a = (long ∗) v ;

}
i n t main (){

f oo () ;
}

✝ ✆

Buffer Overflow 15/61

Example: changing the return address. . .

findret:

#!/bin/csh -f

set i = 0

while ($i < 30)

echo "OFFSET = $i"

sed "s/HERE/$i/" ret.c > r.c

gcc -o ret -g r.c >& /dev/null

gdb -quiet -x cmd ./ret |& grep payload

echo ""

@ i = $i + 1

end

Buffer Overflow 16/61

Example: changing the return address. . .

gdb command file, cmd:
✞ ☎

break pay load
run
q u i t

✝ ✆

Buffer Overflow 17/61

Problems

1 Don’t know the address of the procedure’s return address in
the stack frame.

2 Once we find it, we need an address to replace it with, so we
must have our evil code somewhere in memory along with the
rest of the program.

Buffer Overflow 18/61

Languages of choice

C: “A language that combines all the elegance and
power of assembly language with all the readability
and maintainability of assembly language.” – New
Hacker’s Dictionary

C++: “An octopus made by nailing extra legs onto a dog.”
– Steve Taylor

Buffer Overflow 19/61

C library routines

In the C libraries there are many routines designed for copying data
from one buffer to another:

memcpy(void *dest, void *src, int n) : copy n bytes
from src to dest.

strcpy(char *dest, char *src) : copy data from src

into dest until a null character is found.

strcat(char *dest, char *src) : concatenate src onto
the end of dest (starting at the null character).

sprintf(char *buffer, char *format, ...) : print
formatted output into a buffer.

char* gets(char *str) : read until end-of-line/file.

Idea: Let’s target routines that continue copying until a null
character is reached.

Buffer Overflow 20/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

Buffer Overflow 21/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

2 Check that it has local variable buffer.

Buffer Overflow 21/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

2 Check that it has local variable buffer.

3 Check that it copies data from somewhere into the local
buffer.

Buffer Overflow 21/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

2 Check that it has local variable buffer.

3 Check that it copies data from somewhere into the local
buffer.

4 Overflow the buffer.

Buffer Overflow 21/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

2 Check that it has local variable buffer.

3 Check that it copies data from somewhere into the local
buffer.

4 Overflow the buffer.

5 Write over the return address.

Buffer Overflow 21/61

Buffer overflow idea

1 Find a procedure that uses one of these routines.

2 Check that it has local variable buffer.

3 Check that it copies data from somewhere into the local
buffer.

4 Overflow the buffer.

5 Write over the return address.

6 When the procedure returns, jump where we want.

Buffer Overflow 21/61

Buffer overflow example I

buf.c:
✞ ☎

void pay load (){}
i n t f oo (){

long ∗ buf [1 0] ; i n t i ;
void (∗ v) () = &pay load ;
f o r (i =0; i <30; i++)

buf [i] = (long ∗) v ;
}
i n t main (){ f oo () ; }

✝ ✆

To execute:
✞ ☎

> gcc −g −o buf buf . c
> gdb buf
gdb> break pay load
gdb> run

✝ ✆
Buffer Overflow 22/61

Buffer overflow example II

We could just copy from another buffer instead (buf2.c):
✞ ☎

void p l (){}
t y p ed e f void (∗ fun) () ;
fun s r c [32] = {& pl ,& pl ,& pl ,& pl ,& pl ,& pl , . . . } ;
i n t f oo (){

long ∗ buf [2] ;
i n t i ;
f o r (i =0; i <30; i++)

buf [i] = s r c [i] ;
}
i n t main (){ f oo () ; }

✝ ✆

Buffer Overflow 23/61

Buffer overflow example II. . .

We want to use one of the built-in copy functions (buf3.c):
✞ ☎

void p l (){}
t y p ed e f void (∗ fun) () ;
fun s r c [32] = {& pl ,& pl ,& pl , . . . , 0 } ;
i n t f oo (){

long ∗ buf [2] ; i n t i ;
b u i l t i n s t r c p y (buf , s r c) ;

char ∗ p = &buf ;
f o r (i =0; i <(s i z e o f (fun)∗32) ; i ++){(∗p)−−;p++;}

}
i n t main (){

i n t i ; char ∗ p = & s r c ;
f o r (i =0; i <(s i z e o f (fun)∗32) ; i ++){(∗p)++; p++;};
f oo () ;

}
✝ ✆

Buffer Overflow 24/61

Buffer overflow idea. . .

Hey, what’s up with the increment loop???
✞ ☎

char ∗ p = & s r c ;
f o r (i =0; i <(s i z e o f (fun) ∗ 3 2) ; i ++) {

(∗ p)++;
p++;

} ;
f oo () ;

✝ ✆

The problem is the strcpy copies until it sees a null
character, so, somehow, we need to remove all zero:s from the
source “string”.

Also, compile like this:
✞ ☎

> gcc − fno−s tack−p r o t e c t o r −g −o buf3 buf3 . c
✝ ✆

Buffer Overflow 25/61

Trivial Stack Smashing Attack

A stack smashing attack exploits a buffer vulnerability.
1 inject malicious code (the payload) onto the stack;
2 overwrite the return address of the current routine;
3 when a ret is executed: jump to payload!

Buffer Overflow 26/61

frame n−1

RETURN ADDRESS

BUFFER

Stack

Code

foo() {

}

call bar()

frame n

frame n−1

frame n

RETURN ADDRESS

BUFFER

Stack

Code

foo() {

}

call bar()

frame n−1

Stack

NEW RET ADDRESS

PAYLOAD

PADDING

ATTACKER’S INPUT

Stack Smashing Attack — Problems

Essentially, we want to
✞ ☎

s t a ck [cu r f r ame] . r e t a d d r e s s = &(pay load)
✝ ✆

Problems:
1 How do I find where the ret address?
2 How can I find the address of payload

The payload is also called the shellcode because it’s offen
code to start a shell.

Buffer Overflow 28/61

Finding the shellcode: NOP Sledding

Attack:
1 Increase the size of the payload by adding lots of NOPs.
2 Guess an approximate address within the NOP-sled.
3 Jump to this approximate address, sledding into the actual

payload.

Buffer Overflow 29/61

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

RETURN ADDRESS

BUFFER

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

Stack

frame n

frame n−1

PAYLOAD

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

frame n−1

Stack

PAYLOAD

PADDING

PAYLOAD

NOP
NOP
NOP

NOP

GUESS RET ADDR

NOP

Finding the shellcode: Trampolining

Attack:
1 Find a piece of library code, always loaded at the same address,

that has a jump-indirect-through-register instruction, such as
✞ ☎

JUMPIND [ESP]
✝ ✆

2 Somehow, make ESP point to the payload, for example by
putting the payload in the right location.

3 Overwrite the return address with the address of the jump
instruction.

More precise than NOP sledding if libraries reside in
predictable locations.

Buffer Overflow 31/61

}

call bar()

frame n−1

Stack

frame n

RETURN ADDRESS

BUFFER

Code

foo() {

Library code

write() {

JUMPIND [ESP]

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

}

frame n−1

Stack

frame n

RETURN ADDRESS

BUFFER

ESP = &PAYLOAD

JUMP INSTR ADDR

PAYLOAD

frame n

RETURN ADDRESS

frame n−1

Stack

}

Library code

write() {

JUMPIND [ESP]

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

BUFFER

Code

foo() {

}

call bar()

}

Library code

write() {

JUMPIND [ESP]

frame n−1

Stack

frame n

RETURN ADDRESS

BUFFER

JUMP INSTR ADDR

ESP = &PAYLOAD

PAYLOAD

JUMP INSTR ADDR

PAYLOAD

ESP = &PAYLOAD

Finding the shellcode: Return-to-libc

Attack:
1 Find the address of a library function such as system() or

execv().
2 Overwrite the return address with the address of the library

funtion.
3 Set the arguments to the library function.

No code is executed on the stack!

Attack still works when the stack is marked non-executable.

Buffer Overflow 33/61

}

call bar()

frame n−1

Stack

frame n

RETURN ADDRESS

BUFFER

Code

foo() {

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

RETURN ADDRESS

BUFFER

}

Library code

system(cmd) {

frame n−1

Stack

frame n

cmd = "/bin/sh"

ADDR of system

Preventing Buffer Overflows

Educate the programmer: Use strncpy, not strcpy.

Choice of language: Use Java, not C++.

Detect , at the OS level, when a buffer overflow occurs.

Prevent the return address from being overwritten.

Buffer Overflow 35/61

Preventing Buffer Overflows: Canaries

Defense:
1 Put a random value (the canary) next to the return address.
2 Regularly check that the canary has the right value.

Buffer Overflow 36/61

}

call bar()

RETURN ADDRESS

Code

foo() {

Stack

frame n

BUFFER

frame n−1

CANARY

frame n

RETURN ADDRESS

BUFFER

frame n−1

Stack

Code

foo() {

}

call bar()

frame n−1

Stack

frame n

BUFFER

RETURN ADDRESS

CANARY

NEW RET ADDR

KILLED CANARY

Preventing Buffer Overflows: PointGuard

Defense:
1 XOR all pointers (before and after use) with a random value.

✞ ☎

x = &p ;
y = y−>next ;

✝ ✆

⇒

✞ ☎

x = 0xFEEDFACEˆ(&p) ;
y = 0xFEEDFACEˆ((0xFEEDFACEˆy

✝ ✆

The attacker cannot reliably overwrite the return address.

Buffer Overflow 38/61

Preventing Buffer Overflows: Non-executable stack

Defense:
1 Set the segment containing the stack to non-executable .

Doesn’t help against return-to-libc.

Some programs legitimately generate code on the stack and
jump to it.

Buffer Overflow 39/61

Preventing Buffer Overflows: ASLR

Address space layout randomization .

Defense:
1 Place memory segments in random locations in memory.

Return-to-libc attacks are harder because it’s harder to find
libc.

Finding the shellcode is harder because it’s harder to find the
stack.

If there isn’t enough entropy, brute-force-attacks can defeat
ASLR.

Buffer Overflow 40/61

In-Class Exercise: Goodrich & Tamassia C-3.8

✞ ☎

i n t main (i n t argc , char ∗ a rgv []) {
char continue = 0;
char password [8] ;
s t r c p y (password , a rgv [1]) ;
i f (st rcmp (password , ”CS166”)==0)

continue = 1;
i f (continue)

∗ l o g i n () ;
}

✝ ✆

1 Is this code vulnerable to a buffer-overflow attack with
reference to the variables password[] and continue?

2 We remove the variable continue and simply use the
comparison for login. Does this fix the vulnerability?

3 What is the existing vulnerability when login() is not a
pointer to the function code but terminates with a return()

command?
Buffer Overflow 41/61

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Heap-Based Buffer Overflows 42/61

Heap-Based Buffer Overflows

A buffer contained in a heap object can also be overflowed.

This causes data to be overwritten.

An attacker can craft an overflow such that a function pointer
gets overwritten with the address of the shellcode.

Heap-Based Buffer Overflows 43/61

Malloc

Memory is allocated from the heap via

malloc(int size)

where size is the number of bytes needed. malloc returns
the address of (a pointer to) a region of free memory of at
least size bytes.

malloc returns 0 (NULL) if there isn’t a big enough free
region to satisfy the request.

Heap-Based Buffer Overflows 44/61

Malloc. . .

malloc searches the free list for a free region that’s big
enough, removes it from the free list, and returns its address.

malloc(40)40 4020 30 50

Heap-Based Buffer Overflows 45/61

Malloc. . .

A doubly-linked-list is often used to make insertion and
deletion easier.

/
20 30 5040

Heap-Based Buffer Overflows 46/61

Malloc. . .

What happens if the program asks for 50 bytes, but then
writes 60 bytes to the region? The last 10 bytes overwrite the
first 10 bytes of the next region. This will corrupt the free list
if the next region is free (and probably crash the program if it
is not).

30

Globals: YX Z

*X = "very long string....."

40 20

H
e
a
p

Very long string... 30

???

40 20

H
e
a
p

Heap-Based Buffer Overflows 47/61

Free

The routine

free(void *address)

is used to release memory when it is no longer needed (e.g. an
employee quits or is fired).

The address parameter is a pointer to the region to be freed,
and it must have previously been returned by malloc.

Heap-Based Buffer Overflows 48/61

Heap

Code

foo() {

}

Object1

42

"Hola!"

&foo

BUFFER

p

Heap

Object1

Code

foo() {

}

Heap

Object1

"Hola!"

BUFFER

p

&PAYLOAD

BUFFER

p

&foo

PAYLOAD

42

"Hola!"

42

Defenses

Safe programming practices.

Use a safe language (Java, not C++).

Randomize the location of the heap.

Make the heap non-executable.

Store heap meta-data (the free-list pointers, object size, etc.)
separately from the objects.

Detect when heap meta-data has been overwritten.

Heap-Based Buffer Overflows 50/61

Defenses: Canaries

Add a magic number in the free list node headers. This is a
distinctive value that malloc checks when traversing the free
list, and complains if the value changes (which indicates the
list is corrupted). For example, put a field in the header whose
value is always 0xfeedface.

0xfeedface

20 30 5040
0xfeedface 0xfeedface 0xfeedface

Heap-Based Buffer Overflows 51/61

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Format String Attacks 52/61

Format String Attacks

A buffer contained in a heap object can also be overflowed.

This causes data to be overwritten.

An attacker can craft an overflow such that a function pointer
gets overwritten with the address of the shellcode.

Format String Attacks 53/61

Extracting Data from the Stack

formattest.c:
✞ ☎

i n t main (i n t argc , char ∗∗ a rgv){
p r i n t f (a rgv [1]) ;

}
✝ ✆

gcc -Wno-format formattest.c -o formattest

Run:
✞ ☎

> f o rma t t e s t ”Bob”
Bob

✝ ✆

Run (printing stack data):
✞ ☎

> f o rma t t e s t ”Bob %x %x %x”
Bob 65117 a90 65117 aa8 65117 b00

✝ ✆

Format String Attacks 54/61

The "%n" Modifier: Modifying Data

formatn.c:
✞ ☎

i n t main () {
i n t s i z e ;
p r i n t f (”Bob l o v e s %n A l i c e \n” , & s i z e) ;
p r i n t f (” s i z e = %d\n” , s i z e) ;
return 0 ;

}
✝ ✆

The "%n" modifier to printf stores the number of characters
printed so far.

Run:
✞ ☎

> formatn
Bob l o v e s A l i c e
s i z e = 10

✝ ✆

Format String Attacks 55/61

The "%n" Modifier: Modifying Data

formattest.c:
✞ ☎

i n t main (i n t argc , char ∗∗ a rgv){
p r i n t f (a rgv [1]) ;
return 0 ;

}
✝ ✆

Run formattest again:
✞ ☎

> f o rma t t e s t ”XXXXXXXXXXXXXX %n%n%n%n”
Segmentat ion f a u l t

✝ ✆

The program crashes because the "%n" modifier makes
printf write into a “random” location in memory.

Format String Attacks 56/61

Outline

1 Introduction
2 Arithmetic Overflow
3 Buffer Overflow

Stacks and Buffers
Basic Idea
Stack Smashing Attack
Preventing Buffer Overflows

4 Heap-Based Buffer Overflows
5 Format String Attacks
6 Race Conditions

Race Conditions 57/61

Race Conditions

Program behavior (unintentionally) depends on timing of
events.

Race Conditions 58/61

Open vs. Access

open() :

Opens a file using the effective user ID.
A SetUID program owned by root can open any file.

access() :

Checks if the real user can open a file.

Race Conditions 59/61

Example

✞ ☎

char ∗ f i l e n ame = ”/ u s e r s / j o e / my f i l e ” ;
i f (a c c e s s (f i l ename , R OK) != 0) e x i t (−1);
i n t f i l e = open (f i l ename , O RDONLY) ;
read (f i l e , buf , 1 0 2 3) ; c l o s e (f i l e) ;
p r i n t f (”%s \n” , buf) ;

✝ ✆

There is a small delay betwee access and open.

Between access and open, the attacker can set
✞ ☎

l n − s / e t c /passwd / u s e r s / j o e / my f i l e
✝ ✆

Write a script tha quickly switches the link on and off, until
you get access!

Race Conditions 60/61

Defenses

Don’t use access.

Drop privileges before calling open.

If the user doesn’t have permissions to the file, open will fail.
✞ ☎

char ∗ f i l e n ame = ”/ u s e r s / j o e / my f i l e ” ;
eu i d = ge t eu i d () ;
u i d = ge t u i d () ;

s e t e u i d (u i d) ;
i n t f i l e = open (f i l ename , O RDONLY) ;
read (f i l e , buf , 1 0 2 3) ; c l o s e (f i l e) ;

s e t e u i d (eu i d) ;

p r i n t f (”%s \n” , buf) ;
✝ ✆

Race Conditions 61/61

	Introduction
	Arithmetic Overflow
	Buffer Overflow
	Stacks and Buffers
	Basic Idea
	Stack Smashing Attack
	Preventing Buffer Overflows

	Heap-Based Buffer Overflows
	Format String Attacks
	Race Conditions

