CSc 466/566

Computer Security

11 : Midterm Review

Version: 2012/03/27 13:31:26

Department of Computer Science University of Arizona

collberg@gmail.com Copyright © 2012 Christian Collberg

Christian Collberg

1

Modular Arithmetic

Public-Key Cryptography

- 3 Modelling
- 4 Symmetric Key Ciphers
- Digital Signatures
- 6 Operating System Security

Modular multiplication

• Create the modular multiplication table for Z_7 , $xy \mod 7$.

• Create the modular addition table for Z_7 , $x + y \mod 7$.

Extended Euclidean Algorithm

• Use the Extended Euclidean Algorithm to compute *i* and *j* such that

$$\mathrm{GCD}(65,40)=65\cdot i+40\cdot j$$

• Source: http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf

Extended Euclidean Algorithm

• Use the Extended Euclidean Algorithm to compute *i* and *j* such that

$$GCD(1239,735) = 1239 \cdot i + 735 \cdot j$$

• Source: http://www.mast.queensu.ca/~math418/m418oh/m418oh04.pdf

- Create the modular exponentiation table for Z_7 , $x^y \mod 7$.
- Highlight modular inverses

Totient

- **1** Define $\phi(n)$.
- **2** What's $\phi(43)$?
- **③** What's $\phi(42)$?
- List the elements of Z_{42}^*

- What are the prime factors of 77?
- **2** What's $\phi(77)$?
- S Use Euler's theorem to compute 20⁶² mod 77.

• Computer the modular multiplicative inverse of 7 mod 11, i.e. find x such that $7 \cdot x \mod 11 = 1$.

Discrete logs

Is 3 a primitive root of 11?

Is 2 a primitive root of 11?

Modular Arithmetic Public-Key Cryptography Modelling Symmetric Key Ciphers Digital Signatures Operating System Security • Show the result of encrypting M = 4 using the public key (e, n) = (7, 209) in the RSA cryptosystem. Be efficient!

- **(**) Generate an RSA key-pair using p = 23, q = 13, e = 7.
- **2** Hint: $GCD(7, 264) = 1 = (-113) \times 7 + (3) \times 264$
- Sincrypt M = 88.
- Occupy the result from 2.

http://banach.millersville.edu/~bob/math478/ExtendedEuclideanAlgorithmApplet.html

Show that, for RSA encryption

$$E_k(M_1)\cdot E_k(M_2)=E_k(M_1\cdot M_2)$$

i.e., RSA is homomorphic in multiplication.

- Given the prime p = 11, the generator g = 2 for Z₁₁, and the random number x = 9, compute Bob's private and public Elgamal keys.
- 2 Encrypt the message M = 11 using the random number k = 7.
- **③** Decrypt the ciphertext from 2.

Elgamal encryption...

a^1	a ²	a ³	a ⁴	a ⁵	a ⁶	a ⁷	a ⁸	a ⁹	a^{10}
1	1	1	1	1	1	1	1	1	1
2	4	8	5	10	9	7	3	6	1
3	9	5	4	1	3	9	5	4	1
4	5	9	3	1	4	5	9	3	1
5	3	4	9	1	5	3	4	9	1
6	3	7	9	10	5	8	4	2	1
7	5	2	3	10	4	6	9	8	1
8	9	6	4	10	3	2	5	7	1
9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1

- Let p = 11.
- Let g = 2.
- Let Alice's secret x = 7.
- Let Bob's secret y = 9.
- Compute K_1 .
- **2** Compute K_2 .

Modular Arithmetic
 Public-Key Cryptography
 Modelling
 Symmetric Key Ciphers
 Digital Signatures
 Operating System Securit

Attack tree

- Construct an attack tree for how to get a free lunch at a restaurant!
- Source: http://www.win.tue.nl/~sjouke/publications/papers/attacktrees.pdf.

Modular Arithmetic
 Public-Key Cryptography
 Modelling
 Symmetric Key Ciphers
 Digital Signatures

Symmetric Ciphers: Confusion and Diffusion

• DES is a combination of two basic principles, confusion and diffusion. How do each transform the plaintext into ciphertext?

Modular Arithmetic
 Public-Key Cryptography
 Modelling
 Symmetric Key Ciphers
 Digital Signatures
 Operating System Securit

Digital Signatures: Definitions

- Define the following terms:
 - Nonforgeability
 - Onter Contraction
 Output: Description
 - Onrepudiation

RSA signature: Nonmutability

- Show how the RSA signature scheme does not achieve nonmutability.
- Is this usually a problem? Why?

Cryptographic Hash Function Collision Resistance

• What is the difference between weak and strong collision resistance?

• Show how, given a compression function *C*, a long message *M* can be hashed using the Merkle-Damgård Construction.

- Assume our hash function *H* has *b*-bit output.
- The number of possible hash values is 2^b .
- Attack:
 - Eve generates large number of messages m_1, m_2, \ldots
 - 2 She computes their hash values $H(m_1), H(m_2), \ldots$
 - She waits for two messages m_i and m_j such that H(m_i) = H(m_j).
- Eve needs to generate ≈ 2^b inputs to find a collision, right or wrong? Why?

D Modular Arithmetic

- 2 Public-Key Cryptography
- 3 Modelling
- 4 Symmetric Key Ciphers
- 5 Digital Signatures
- 6 Operating System Security

Secure boot vs. Authenticated boot

• What is the difference between Secure boot and Authenticated boot?

- What are the basic things you need to trust in a TPM-based system?
- What are the three main life-time events of a TPM chip?

TPM Challenge

• Describe the events that occur during a TPM challenge!

TPM Sealing

• Describe how the TPM can be used for Digital Rights Management of digital media and software!

SetUID Vulnerability

• Show how a malicious user can abuse a setUID program to gain root access!