
CSc 466/566

Computer Security

12 : Malware
Version: 2012/03/28 16:06:10

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/73

collberg@gmail.com

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Introduction 2/73

Introduction

Introduction 3/73

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Insider Attacks 4/73

Insider Attacks

A backdoor is a hidden command inserted by the developer.

Backdoors can be inserted
1 for debugging
2 to bypass security checks in an emergency

War Games :

Trailer: http://www.youtube.com/watch?v=tAcEzhQ7oqA

Mr. Potatohead: http://www.youtube.com/watch?v=mNiiBrEHBWA

Insider Attacks 5/73

http://www.youtube.com/watch?v=tAcEzhQ7oqA
http://www.youtube.com/watch?v=mNiiBrEHBWA

Malicious Backdoors

A programmer may insert a malicious backdoor to gain
access later.

A deliberate vulnerability (buffer overflow, etc.) can be
inserted, allowing the programmer easy access.

Insider Attacks 6/73

Logic Bombs

A programmer inserts an action that will happen when a
certain condition is true:

✞ ☎

i f (Bob i s not on the p a y r o l l anymore)
c r a s h s y s t em () ;

✝ ✆

A logic bomb can be combined with a backdoor that allows
the programmer to disable it:

✞ ☎

boolean d i s a b l e d=f a l s e ;

i f (today==” A p r i l 1 ” && not d i s a b l e d)
d e l e t e a l l b a c k u p s () ;

void backdoor () {
d i s a b l e d = true ;

}
✝ ✆

Insider Attacks 7/73

Fannie Mae Logic Bomb

Source: http://www.wired.com/threatlevel/2009/01/fannie/

Unix engineer Rajendrasinh Babubha Makwana, 35, was indicted
Tuesday in federal court in Maryland on a single count of computer
sabotage for allegedly writing and planting the malicious code on
Oct. 24, the day he was fired from his job. The malware had been
set to detonate at 9:00 a.m. on Jan. 31, but was instead
discovered by another engineer five days after it was planted,
according to court records.
On the afternoon of Oct. 24, he was told he was being fired
because of a scripting error hed made earlier in the month, but he
was allowed to work through the end of the day.

Insider Attacks 8/73

http://www.wired.com/threatlevel/2009/01/fannie/

Fannie Mae Logic Bomb. . .

Five days later, another Unix engineer at the data center discovered
the malicious code hidden inside a legitimate script that ran
automatically every morning at 9:00 a.m. Had it not been found,
the FBI says the code would have executed a series of other scripts
designed to block the companys monitoring system, disable access
to the server on which it was running, then systematically wipe out
all 4,000 Fannie Mae servers, overwriting all their data with zeroes.
”This would also destroy the backup software of the servers
making the restoration of data more difficult because new
operating systems would have to be installed on all servers before
any restoration could begin,” wrote Nye.

Insider Attacks 9/73

Fannie Mae Logic Bomb. . .

As a final measure, the logic bomb would have powered off the
servers.
The trigger code was hidden at the end of the legitimate program,
separated by a page of blank lines. Logs showed that Makwana
had logged onto the server on which the logic bomb was created in
his final hours on the job.

Insider Attacks 10/73

Fannie Mae Logic Bomb. . .

Source:
http://www.thetechherald.com/articles/Fannie-Mae-logic-bomb-creator-found-guilty/11557

Facts in the case prove that Fannie Mae had strong logging
processes. The initial affidavit says Makwana was singled out as
the person who wrote the malicious script because logs revealed his
username was the last to access the system where the logic bomb
was located. In addition, he was the last to access the malicious
file itself, and IP address assignment was used to show he did all of
this from his company laptop.

Insider Attacks 11/73

http://www.thetechherald.com/articles/Fannie-Mae-logic-bomb-creator-found-guilty/11557

Fannie Mae Logic Bomb. . .

Source:
http://www.thetechherald.com/articles/Fannie-Mae-logic-bomb-creator-found-guilty/11557

Facts in the case prove that Fannie Mae had strong logging
processes. The initial affidavit says Makwana was singled out as
the person who wrote the malicious script because logs revealed his
username was the last to access the system where the logic bomb
was located. In addition, he was the last to access the malicious
file itself, and IP address assignment was used to show he did all of
this from his company laptop.

Insider Attacks 12/73

http://www.thetechherald.com/articles/Fannie-Mae-logic-bomb-creator-found-guilty/11557

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Use software engineering tools .

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Use software engineering tools .

Use least privilege principle — no one should have more
privileges than they need to do their job.

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Use software engineering tools .

Use least privilege principle — no one should have more
privileges than they need to do their job.

Physically secure systems .

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Use software engineering tools .

Use least privilege principle — no one should have more
privileges than they need to do their job.

Physically secure systems .

Monitor employee behavior — watch out for disgruntled
administrators.

Insider Attacks 13/73

Defending Against Insider Attacks

No single points of failure — administrators shouldn’t be
allowed to access important systems alone.

Code walk-throughs — can the programmer explain the logic
bomb?

Use software engineering tools .

Use least privilege principle — no one should have more
privileges than they need to do their job.

Physically secure systems .

Monitor employee behavior — watch out for disgruntled
administrators.

Limit new software installations.

Insider Attacks 13/73

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Computer Viruses 14/73

Computer Viruses

Viruses
1 are self-replicating ;
2 attach themselves to other files;
3 requires user assistance to to replicate.

Computer Viruses 15/73

Computer Viruses: Phases

PropagationDormant

Triggering

Action

Computer Viruses 16/73

Computer Viruses: Phases. . .

Dormant — lay low, avoid detection.

Propagation — infect new files and systems.

Triggering — decide to move to action phase

Action — execute malicious actions, the payload.

Computer Viruses 17/73

Virus Types

Program/File virus :

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.
Propagates by: emailing documents.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus :

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus :

Attaches to: hard drive boot sector.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus :

Attaches to: hard drive boot sector.
Run when: computer boots.

Computer Viruses 18/73

Virus Types

Program/File virus :

Attaches to: program object code.
Run when: program executes.
Propagates by: program sharing.

Doocument/Macro virus :

Attaches to: document (.doc,.pdf,. . .).
Run when: document is opened.
Propagates by: emailing documents.

Boot sector virus :

Attaches to: hard drive boot sector.
Run when: computer boots.
Propagates by: sharing floppy disks.

Computer Viruses 18/73

Computer Viruses: Propagation

File Header

Original
Program

Virus

File Header

Original
Program

Computer Viruses 19/73

Example: Jerusalem

Target: DOS executables.

Trigger: Friday the 13th.

Payload: Deletes files.

Propagation: Memory resident, infects executed programs.

http://www.youtube.com/watch?v=u3k-8kJ54sg

Computer Viruses 20/73

http://www.youtube.com/watch?v=u3k-8kJ54sg

Example: Melissa

Target: MS Word Macro virus.

Trigger: User opens document.

Payload/Propagation: Emails infected documents to 50
contacts.

http://www.youtube.com/watch?v=hu-rhzOgExg

Computer Viruses 21/73

http://www.youtube.com/watch?v=hu-rhzOgExg

Example: Elk Cloner

Target: Apple II boot sector.

Payload: Prints poem every 50th time the program is
rebooted.

Elk Cloner: The program with a personality

It will get on all your disks

It will infiltrate your chips

Yes, it’s Cloner!

It will stick to you like glue

It will modify RAM too

Send in the Cloner!

Computer Viruses 22/73

Example: Elk Cloner. . .

Source: http://en.wikipedia.org/wiki/Elk_Cloner

Elk Cloner was created in 1981 by Rich Skrenta, a 15-year-old high
school student. Skrenta was already distrusted by his friends
because, in sharing computer games and software, he would often
alter the floppy disks to shut down or display taunting on-screen
messages. Because his friends no longer trusted his disks, Skrenta
thought of methods to alter floppy disks without physically
touching them.
During a winter break [] Skrenta discovered how to launch the
messages automatically on his Apple II computer. He developed
what is now known as a boot sector virus, and began circulating it
in early 1982 among high school friends and a local computer club.

Computer Viruses 23/73

http://en.wikipedia.org/wiki/Elk_Cloner

Example: Sality

Target: Windows executable files.

Propagation: Infects other local executable files.

Obscures its entry point.

Downloads and executes other malware.

Creates peer-to-peer botnet.

Disables security software.

Injects itself into running processes to make sure it remains on
the computer.

Computer Viruses 24/73

Virus Defenses

Signatures : Regular expressions over the virus code used to
detect if files have been infected.

Checking can be done
1 periodically over the entire filesystem;
2 whenever a new file is downloaded.

Computer Viruses 25/73

Virus Countermeasures

Viruses need to protect themselves against detection.

This means hiding any distringuishing features, making it hard
to construct signatures.

By encrypting its payload, the virus hides its distinguishing
features.

Encryption is often no more than xor with a constant.

Computer Viruses 26/73

Virus Countermeasures: Encryption

By encrypting its payload, the virus hides its distinguishing
features.

The decryption routine itself, however, can be used to create
a signature!

Computer Viruses 27/73

Computer Countermeasures: Encryption. . .

Original
Program

File Header

Original
Program Encrypted

Key

Virus Code

Routine
Decryption

File Header

Computer Viruses 28/73

Virus Countermeasures: Polymorphism

Each variant is encrypted with a different key.

Computer Viruses 29/73

Virus Countermeasures: Metamorphism

To prevent easy creation of signatures for the decryption
routine, metamorphic viruses will mutate the decryptor, for
each infection.

The virus contains a mutation engine which can modify the
decryption code while maintaining its semantics.

Computer Viruses 30/73

Computer Countermeasures: Metamorphism. . .

Program

Mutation
Engine

Routine

Mutated
Decryption

Encrypted
Virus Code

File Header

KeyFile Header

Original
Program

Original

Computer Viruses 31/73

Virus Countermeasures: Metamorphism. . .

To counter metamorphism, virus detectors can run the virus in
an emulator .

The emulator gathers a trace of the execution.

A virus signature is then constructed over the trace.

This makes it easier to ignore garbage instructions the
mutation engine may have inserted.

Computer Viruses 32/73

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Trojan Horses 33/73

Trojan Horses

A trojan horse is a program that appears to perform a useful
task, but, in addition, performs a malicous task.

Example:

Useful task: A better ls.
Malicious task: Exfiltrate company secrets.

Trojan Horses 34/73

Trojan Horses

Trojan Horses 35/73

Trojan Horses: The AIDS Trojan

When the boot count reaches 90, AIDS encrypts the names of
all files.

The user is asked to renew the license.

To recover the files the user needs to send $189 to a P.O. box
in Panama.

Trojan Horses 36/73

Trojan Horses: The AIDS Trojan

Source: http://en.wikipedia.org/wiki/AIDS_(trojan_horse)

The AIDS software end user license agreement:
If you install [this] on a microcomputer... then under terms of this
license you agree to pay PC Cyborg Corporation in full for the cost
of leasing these programs... In the case of your breach of this
license agreement, PC Cyborg reserves the right to take legal
action necessary to recover any outstanding debts payable to PC
Cyborg Corporation and to use program mechanisms to ensure
termination of your use... These program mechanisms will
adversely affect other program applications... You are hereby
advised of the most serious consequences of your failure to abide
by the terms of this license agreement; your conscience may haunt
you for the rest of your life... and your [PC] will stop functioning
normally... You are strictly prohibited from sharing [this product]
with others...

Trojan Horses 37/73

http://en.wikipedia.org/wiki/AIDS_(trojan_horse)

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Worms 38/73

Worms

A computer virus:

adds itself to other programs;
cannot run independently;
needs help from a human to spread.

A worm propagates fully working versions of itself to other
machines without

attaching itself to other programs;
human assistance.

Worms carry malicious payloads, such as

installing backdoors;
deleting files, . . .

Worms 39/73

Worm tasks

Worm tasks:
1 infect a victim machine by exploiting a vulnerability (buffer

overflow) in a network service exported by the machine;

Worms 40/73

Worm tasks

Worm tasks:
1 infect a victim machine by exploiting a vulnerability (buffer

overflow) in a network service exported by the machine;
2 spread by infecting other computers reachable from the victim

machine;

Worms 40/73

Worm tasks

Worm tasks:
1 infect a victim machine by exploiting a vulnerability (buffer

overflow) in a network service exported by the machine;
2 spread by infecting other computers reachable from the victim

machine;
3 ensure survival when the victim machine is rebooted.

Worms 40/73

Worm Propagation

Initial infection

network
service

Failed
infections

Failed
re−infection

Vulnerable

Worms 41/73

Worm Propagation Rate

N — total number of vulnerable hosts.

I (t) — number of infected hosts at time t.

S(t) — number of susceptible hosts at time t. A host is
susceptible if it’s vulnerable but not infected yet.

β — infection rate, constant describing the speed of
propagation.

I (0) = 1

S(0) = N − 1

I (t + 1) = I (t) + β · I (t) · S(t)

S(t + 1) = N − I (t + 1)

Worms 42/73

Worm Propagation Rate. . .

I (0) = 1

S(0) = N − 1

I (t + 1) = I (t) + β · I (t) · S(t)

S(t + 1) = N − I (t + 1)

The number of new infections is I (t + 1) − I (t):

I (t + 1) − I (t) = (I (t) + β · I (t) · S(t)) − I (t)

= β · I (t) · S(t)

The number of new infections is proportional to the current
number of infected hosts and to the number of susceptible
hosts.

Worms 43/73

Three Phaseds of Worm Propagation

slow finish

fast spread

slow start

I (t)

t
Worms 44/73

The Morris Worm

Attacked BSD Unix derivative systems on the internet on 2
November 1988.

Specifically targeted SUNs and VAXes.

Computer Virus TV News Report 1988:
http://www.youtube.com/watch?v=G2i_6j55bS0

Worms 45/73

http://www.youtube.com/watch?v=G2i_6j55bS0

Robert Morris

Cornell graduate student.

Convicted under the Computer Fraud and Abuse Act: 3 years
probation, 400 hours community service, $10,050.

Tenured Professor at MIT.

Son of Robert Morris, coauthor of UNIX, former chief scientist
at the National Computer Security Center.

Worms 46/73

The Worm

Disk containing the source code for the Morris Worm held at
the Boston Museum of Science.

Source: http://en.wikipedia.org/wiki/Morris_worm.
Worms 47/73

http://en.wikipedia.org/wiki/Morris_worm

Which Vulnerabilities to Exploit?

SUN: sendmail

VAX: finger

Remote execution system using rsh or rexec.

Worms 48/73

Exploting weak passwords

Accounts with obvious passwords

Accounts with passwords in a 432 word dictionary

Accounts with passwords in /usr/dict/words

Accounts which trusted other machines via the .rhosts

mechanism

Worms 49/73

Which machines to spread to?

SUNs and VAXes

Machines in /etc/hosts.equiv

Machines in .rhosts

Machines in .forward files

Network gateways from routing tables

Machines at the far end of point-to-point interfaces

Machines at randomly guessed addresses on networks of first
hop gateways

Worms 50/73

What the Worm did not do. . .

Did not

gain or attack root
destroy or attempt to destroy data
differentiate among networks

Worms 51/73

sendmail Exploit

Worm exploited the ”debug” function

Debug includes the ability to send a mail message with a
program as the recipient

The recieving program runs with input from the body of the
message

Worms 52/73

fingerd Exploit

fingerd used gets for input

gets takes input to a buffer without bounds checking

buffer overflow allows for the creation of a fake stack frame,
causing code to execute when the function returns

Worms 53/73

rexec Exploit

rexec requires username and plaintext password that are
passed over the network.

The worm used pairs of usernames and passwords that it
found to be correct on the local host.

/etc/passwd facilitated this search.

Worms 54/73

rsh Exploit

/etc/hosts.equiv contains a list of trusted hosts

.rhosts contains a list of trusted hosts on a per-user basis

rsh trusts the machine rather than any property of the user

Worms 55/73

Host

Interface Table

if_init rt_init

Hit finger Hit SMTP Hit rsh Hit rexec

Wait for infected client to respond

Routing Table

User
Name

List and
Guessed

Passwords

/.rhosts /etc/hosts.equiv

Phase 0 /etc/passwd

/usr/dict/words

Internal Words

~/.rhosts

~/.forward

List

Phase1

Phase 2

Phase 3

Obvious Guesses

How to Evade Detection?

Covering tracks:

Erased argument list.
Deleted executing binary.
Used resource limit functions to prevent core dump.

Worms 57/73

Evading Detection. . .

Camouflage:

Compiled under the name sh
Forked every 3 minutes

parent exits, child continues

Obscured constant strings by xor’ing each character with the
constant 81

Worms 58/73

Code Red

Code Red (original)

Released 7/13/2001
Exploited a buffer overflow in Microsoft Internet Information
Server (Web Server)
Launched 99 threads to attack random IP addresses
100th thread defaced the web server itself

Problems with Code Red

Random number generator had a fixed seed
All copies of worm, on all infected hosts, attacked the same
sequence of random IP addresses
Linear Spread

Worms 59/73

Code Red I

Released 7/19/2001

Fixed the random number generator seed problem

Attacked www.whitehouse.gov

Spread very rapidly

Compromised all vulnerable MS IIS servers on the net

Random Constant Spread (RCS) model

Worms 60/73

www.whitehouse.gov

Code Red II

Released 8/4/2001

Unrelated to Code Red I

A comment in the worm identified it as ”Code Red II”

Attacked MS IIS on Windows 2000

Caused MS IIS on Windows NT to crash

Installed root-access back door

Introduced Localized Scanning strategy

Worms 61/73

What needs to be done?

1 Find vulnerabilities to exploit.

2 Write code to

1 generate machines to attack;
2 exploit vulnerability;
3 check if host is already infected;
4 install/execute the payload;
5 make the worm survive reboots.

3 Launch the worm on initial victims.

Worms 62/73

Writing Better Worms

Hit-List Scanning

Permutation Scanning

Warhol Worms (Hit-List + Permutation Scanning)

Topological Worms

Flash Worms

Stealth Worms

Worms 63/73

Hit-List Scanning

Worms need to “get off the ground” quickly

Do preparatory work before releasing the worm:

Collect IP addresses of vulnerable servers
Create a hit-list with them

The worm starts with the full hit-list

Partition the hit-list in half each time a host is infected

Divide-and-Conquer approach

Once hit-list is exhausted, do random attacks

Worms 64/73

Permutation Scanning

Would like to avoid attacking already-attacked hosts

But, we can’t tell ahead of time which hosts have already
been attacked

However, we can predict what other worms are doing

How to stay out of the way of other worms:

All worms start with the same random permutation of address
Each worm starts at a different spot in the list
If you find an already-compromised host, then jump to a new
random spot in the list

Worms 65/73

Warhol Worms

Warhol Worms: ”Everyone has their 15 minutes of fame”

Hit-List + Permutation Scanning
Attacks most vulnerable hosts on the net within 15-60 minutes

Worms 66/73

Topological Scanning

Alternative to Hit-List

Use information on the compromised host to find more targets

Examples:

List of peers on peer-sharing systems
URLs on web servers
www.yahoo.com → mail.yahoo.com, games.yahoo.com, . . .

Worms 67/73

www.yahoo.com
mail.yahoo.com
games.yahoo.com

Flash Worms: Cyber-Warfare

Infect most vulnerable servers within 10s of seconds

Works like hit-lists

Scan the entire Internet for vulnerable machines prior to
launching attack

Scanning could be done in 2 hours with an OC-12 connection

12.6 million web servers = 48 MB list

Divide and Conquer

Worms 68/73

Stealth Worms

Spread slowly rather than quickly

Infect without being detected

Use unsuspecting clients to spread the attack

Worms 69/73

Detecting Worms

Establish a Cyber Center for Disease Control (CDC)

Identify Outbreaks
Analyze Pathogens
Fight Infections
Anticipate new vectors
Devise detectors for new vectors
Resist future attacks

Worms 70/73

Outline

1 Introduction
2 Insider Attacks
3 Computer Viruses

Virus Types
Propagation
Examples
Virus Defenses
Virus Countermeasures

4 Trojan Horses
5 Worms

The Morris Worm
The Code Red Worm
Writing Better Worms
Detecting Worms

6 Summary

Summary 71/73

Readings and References

Chapter 4 in Introduction to Computer Security, by Goodrich
and Tamassia.

Summary 72/73

Acknowledgments

Additional material and exercises have also been collected from
these sources:

1 Igor Crk and Scott Baker, 620—Fall 2003—Basic

Cryptography.

Summary 73/73

	Introduction
	Insider Attacks
	Computer Viruses
	Virus Types
	Propagation
	Examples
	Virus Defenses
	Virus Countermeasures

	Trojan Horses
	Worms
	The Morris Worm
	The Code Red Worm
	Writing Better Worms
	Detecting Worms

	Summary

