
Program Analysis

Attackers : need to analyze our program to modify it!

Defenders : need to analyze our program to protect it!

Two kinds of analyses:
1 static analysis tools collect information about a program by

studying its code;
2 dynamic analysis tools collect information from executing the

program.

1/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

debugging : what path does the program take?

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

debugging : what path does the program take?

tracing : which functions/system calls get executed?

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

debugging : what path does the program take?

tracing : which functions/system calls get executed?

profiling : what gets executed the most?

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

debugging : what path does the program take?

tracing : which functions/system calls get executed?

profiling : what gets executed the most?

disassembly : turn raw executables into assembly code.

2/22

Static and Dynamic Analyses

control-flow graphs : representation of functions.

call graphs : representation of (possible) function calls.

debugging : what path does the program take?

tracing : which functions/system calls get executed?

profiling : what gets executed the most?

disassembly : turn raw executables into assembly code.

decompilation : turn raw assembly code into source code.

2/22

Outline

1 Static Analysis
Control-flow analysis

2 Reconstituting source
Disassembly

Static Analysis 3/22

Control-flow Graphs (CFGs)

A way to represent functions .

Nodes are called basic blocks .

Each block consists of straight-line code ending (possibly) in a
branch.

An edge A→ B : control could flow from A to B .

Static Analysis 4/22

✞ ☎

i n t modexp (i n t y , i n t x [] ,
i n t w, i n t n) {

i n t R , L ;
i n t k = 0 ;
i n t s = 1 ;
whi le (k < w) {

i f (x [k] == 1)
R = (s ∗y) % n ;

e l s e

R = s ;
s = R∗R % n ;
L = R;
k++;

}
return L ;

}
✝ ✆

✞ ☎

(1) k=0
(2) s=1
(3) i f (k>=w) goto (12)
(4) i f (x [k] !=1) goto (7)
(5) R=(s ∗y)%n
(6) goto (8)
(7) R=s
(8) s=R∗R%n
(9) L=R

(10) k++
(11) goto (3)
(12) return L

✝ ✆
Static Analysis 5/22

The resulting graph

(1) k=0
(2) s=1

(7) R=s(5) R=(s*y) mod n

(12) return L

(8) s=R*R mod n
(9) L = R

(10) k++
(11) goto B1

B0 :

B4 :B3 :

(6) goto B5

B6 :

B1 :
(3) if (k>=w)goto B6

(4) if (x[k]!=1) goto B4
B2 :

B5 :

Static Analysis 6/22

BuildCFG(F):

1 Mark every instruction which can start a basic block as a

leader:

the first instruction is a leader;

any target of a branch is a leader;

the instruction following a conditional branch is a

leader.

2 A basic block consists of the instructions from a leader up

to, but not including, the next leader.

3 Add an edge A→ B if A ends with a branch to B or can fall

through to B.

Static Analysis 7/22

Interprocedural control flow

Interprocedural analysis also considers flow of information
between functions.

Call graphs are a way to represent possible function calls .

Each node represents a function.

An edge A→ B : A might call B .

Static Analysis 8/22

Building call-graphs

✞ ☎

void h () ;

void f (){
h () ;

}

void g (){
f () ;

}

void h () {
f () ;
g () ;

}

void k () {}

h

f

gmain

k

Static Analysis 9/22

Outline

1 Static Analysis
Control-flow analysis

2 Reconstituting source
Disassembly

Reconstituting source 10/22

Reconstituting source

trans

p.c
header
.data
.text
symbols

relocation

p
p.s

as ld strip
header
.data
.text

p’cc header
.data
.text
symbols

relocation

p.o

Reconstituting source 11/22

Attacking stripped binary code

dis

header
.data
.text

p’’

p’’

hex
editorheader

.data

.text

p’

dcc edit cc
p’.s p’.c p’’.c

Reconstituting source 12/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Finding the end of fuctions — if no dedicated return
instruction.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Finding the end of fuctions — if no dedicated return
instruction.

Handwritten assembly code — won’t conform to the standard
calling conventions.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Finding the end of fuctions — if no dedicated return
instruction.

Handwritten assembly code — won’t conform to the standard
calling conventions.

code compression — the code of two functions may overlap.

Reconstituting source 13/22

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Finding the end of fuctions — if no dedicated return
instruction.

Handwritten assembly code — won’t conform to the standard
calling conventions.

code compression — the code of two functions may overlap.

Self-modifying code .

Reconstituting source 13/22

Instruction set 1

opcode mnemonic operands semantics

0 call addr function call to addr

1 calli reg function call to address in reg

2 brg offset branch to pc+offset if flags for
> are set

3 inc reg reg ← reg + 1

4 bra offset branch to pc + offset

5 jmpi reg jump to address in reg

6 prologue beginning of function

7 ret return from function

Instruction set for a small architecture.

All operators and operands are one byte long.

Instructions can be 1-3 bytes long.

Reconstituting source 14/22

Instruction set 2

opcode mnemonic operands semantics

8 load reg1, (reg2) reg1 ← [reg2]

9 loadi reg , imm reg ← imm

10 cmpi reg , imm compare reg and imm and set
flags

11 add reg1, reg2 reg1 ← reg1 + reg2

12 brge offset branch to pc+offset if flags for
≥ are set

13 breq offset branch to pc+offset if flags for
= are set

14 store (reg1), reg2 [reg1]← reg2

Reconstituting source 15/22

Disassembly — example

✞ ☎

6 0 1 0 9 0 4 3 1 0 7 0 6 9 0 1 1 0 0 1 2 2 6 9
1 3 0 1 1 1 0 8 2 1 5 2 3 2 3 7 9 1 3 4 7 9 1 4
4 2 7 6 9 0 3 7 6 9 0 1 7 4 2 2 4 3 1 7 4
3 4 1

✝ ✆

Next few slides show the results of different disassembly
algorithms.

Correctly disassembled regions are in pink.

Reconstituting source 16/22

✞ ☎

main : # ORIGINAL PROGRAM
0 : [6] p r o l ogu e
1 : [0 , 1 0] c a l l f oo
3 : [9 , 0 , 4 3] l o a d i r0 , 43
6 : [1 , 0] c a l l i r0
8 : [7] r e t
9 : [0] . a l i g n 2
foo :
1 0 : [6] p r o l ogu e
1 1 : [9 , 0 , 1] l o a d i r0 , 1
1 4 : [1 0 , 0 , 1 cmpi r0 , 1
1 7 : [2 , 2 6] brg 26
1 9 : [9 , 1 , 3 0] l o a d i r1 , 30
2 2 : [1 1 , 1 , 0] add r1 , r0
2 5 : [8 , 2 , 1] l oad r2 , (r1)
2 8 : [5 , 2] jmp i r2
3 0 : [3 2] . byte 32
3 1 : [3 7] . byte 37
3 2 : [9 , 1 , 3] l o a d i r1 , 3
3 5 : [4 , 7] bra 7

✞ ☎

bar :
4 3 : [6] p r o l ogu e
4 4 : [9 , 0 , 3] l o a d i r0 , 3
4 7 : [7] r e t
baz :
4 8 : [6] p r o l ogu e
4 9 : [9 , 0 , 1] l o a d i r0 , 1
5 2 : [7] r e t
l i f e :
5 3 : [4 2] . byte 42
f r e d :
5 4 : [2 , 4] brg 4
5 6 : [3 , 1] i n c r1
5 8 : [7] r e t
5 9 : [4 , 3] bra 3
6 1 : [4 , 1] bra 1

✝ ✆

✞ ☎

LINEAR SWEEP DISASSEMBLY
0 : [6] p r o l ogu e
1 : [0 , 1 0] c a l l 10
3 : [9 , 0 , 4 3] l o a d i r0 , 43
6 : [1 , 0] c a l l i r0
8 : [7] r e t
9 : [0 , 6] c a l l 6
1 1 : [9 , 0 , 1] l o a d i r0 , 1
1 4 : [1 0 , 0 , 1] cmpi r0 , 1
1 7 : [2 , 2 6] brg 26
1 9 : [9 , 1 , 3 0] l o a d i r1 , 30
2 2 : [1 1 , 1 , 0] add r1 , r0
2 5 : [8 , 2 , 1] l oad r2 , (r1)
2 8 : [5 , 2] jmp i r2
3 0 : [3 2] ILLEGAL 32
3 1 : [3 7] ILLEGAL 37
3 2 : [9 , 1 , 3] l o a d i r1 , 3
3 5 : [4 , 7] bra 7
3 7 : [9 , 1 , 4] l o a d i r1 , 4
4 0 : [4 , 2] bra 2

✞ ☎

4 3 : [6] p r o l ogu e
4 4 : [9 , 0 , 3] l o a d i r0 , 3
4 7 : [7] r e t
4 8 : [6] p r o l ogu e
4 9 : [9 , 0 , 1] l o a d i r0 , 1
5 2 : [7] r e t
5 3 : [4 2] ILLEGAL 42
5 4 : [2 , 4] brg 4
5 6 : [3 , 1] i n c r1
5 8 : [7] r e t
5 9 : [4 , 3] bra 3
6 1 : [4 , 1] bra 1

✝ ✆

✞ ☎

f 0 : # RECURSIVE TRAVERSAL
0 : [6] p r o l ogu e
1 : [0 , 1 0] c a l l 10
3 : [9 , 0 , 4 3] l o a d i r0 , 43
6 : [1 , 0] c a l l i r0
8 : [7] r e t

9 : [0] . byte 0

f10 :
1 0 : [6] p r o l ogu e
1 1 : [9 , 0 , 1] l o a d i r0 , 1
1 4 : [1 0 , 0 , 1] cmpi r0 , 1
1 7 : [2 , 2 6] brg 26
1 9 : [9 , 1 , 3 0] l o a d i r1 , 30
2 2 : [1 1 , 1 , 0] add r1 , r0
2 5 : [8 , 2 , 1] l oad r2 , (r1)
2 8 : [5 , 2] jmp i r2
3 0 : [3 2] . byte 32
3 1 : [3 7] . byte 37

✝ ✆

✞ ☎

3 2 : [9 , 1 , 3] l o a d i r1 , 3
3 5 : [4 , 7] bra 7
3 7 : [9 , 1 , 4] l o a d i r1 , 4
4 0 : [4 , 2] bra 2
4 2 : [7] r e t
4 3 : [6] p r o l ogu e
4 4 : [9 , 0 , 3] l o a d i r0 , 3
4 7 : [7] r e t

4 8 : [6] . byte 6
4 9 : [9] . byte 9
5 0 : [0] . byte 0
5 1 : [1] . byte 1
5 2 : [7] . byte 7
5 3 : [4 2] . byte 42
5 4 : [2] . byte 2

.
5 9 : [4] . byte 4
6 0 : [3] . byte 3
6 1 : [4] . byte 4

Algorithm reHM

Extends the standard recursive traversal algorithm with a
collection of heuristics to inrease precision.

Reconstituting source 20/22

Algorithm reHM

Extends the standard recursive traversal algorithm with a
collection of heuristics to inrease precision.

First, follow all branches and returns a set of function start
addresses and a set of decoded addresses.

Reconstituting source 20/22

Algorithm reHM

Extends the standard recursive traversal algorithm with a
collection of heuristics to inrease precision.

First, follow all branches and returns a set of function start
addresses and a set of decoded addresses.

Next, try to decode any remaining undecoded bytes by
looking for prologue instructions that could start a function.

Reconstituting source 20/22

Algorithm reHM

Extends the standard recursive traversal algorithm with a
collection of heuristics to inrease precision.

First, follow all branches and returns a set of function start
addresses and a set of decoded addresses.

Next, try to decode any remaining undecoded bytes by
looking for prologue instructions that could start a function.

Next, try to build a reasonable control flow graph from the
remaining undecoded bytes.

Reconstituting source 20/22

Algorithm reHM

Extends the standard recursive traversal algorithm with a
collection of heuristics to inrease precision.

First, follow all branches and returns a set of function start
addresses and a set of decoded addresses.

Next, try to decode any remaining undecoded bytes by
looking for prologue instructions that could start a function.

Next, try to build a reasonable control flow graph from the
remaining undecoded bytes.

Reasonable CFG: “there are no jumps into the middle of
another instruction and the resulting function contains at
least two control transfer instruction.”

Reconstituting source 20/22

✞ ☎

f 0 : # HARRIS/MILLER
0 : [6] p r o l ogu e
1 : [0 , 1 0] c a l l 10
3 : [9 , 0 , 4 3] l o a d i r0 , 43
6 : [1 , 0] c a l l i r0
8 : [7] r e t
9 : [0] . byte 0

f10 :
1 0 : [6] p r o l ogu e
1 1 : [9 , 0 , 1] l o a d i r0 , 1
1 4 : [1 0 , 0 , 1] cmpi r0 , 1
1 7 : [2 , 2 6] brg 26
1 9 : [9 , 1 , 3 0] l o a d i r1 , 30
2 2 : [1 1 , 1 , 0] add r1 , r0
2 5 : [8 , 2 , 1] l oad r2 , (r1)
2 8 : [5 , 2] jmp i r2
3 0 : [3 2] . byte 32
3 1 : [3 7] . byte 37
3 2 : [9 , 1 , 3] l o a d i r1 , 3

✞ ☎

f 43 :
4 3 : [6] p r o l ogu e
4 4 : [9 , 0 , 3] l o a d i r0 , 3
4 7 : [7] r e t

f48 :
4 8 : [6] p r o l ogu e
4 9 : [9 , 0 , 1] l o a d i r0 , 1
5 2 : [7] r e t

5 3 : [4 2] . byte 42

f54 :
5 4 : [2 , 4] brg 4
5 6 : [3 , 1] i n c r1
5 8 : [7] r e t

5 9 : [4] . byte 4
6 0 : [3] . byte 3

Algorithm reHM

Function f43 is only called indirectly, function f48 isn’t called
at all — the disassembler still finds them by searching for
their prologue instructions.

Reconstituting source 22/22

Algorithm reHM

Function f43 is only called indirectly, function f48 isn’t called
at all — the disassembler still finds them by searching for
their prologue instructions.

The disassembler next starts at location 53, realizes that 42
isn’t a valid opcode, moves to location 54, builds a valid CFG.

Reconstituting source 22/22

Algorithm reHM

Function f43 is only called indirectly, function f48 isn’t called
at all — the disassembler still finds them by searching for
their prologue instructions.

The disassembler next starts at location 53, realizes that 42
isn’t a valid opcode, moves to location 54, builds a valid CFG.

The algorithm recovered 95.6% of all functions over a set of
Windows and Linux programs.

Reconstituting source 22/22

	Static Analysis
	Control-flow analysis

	Reconstituting source
	Disassembly

