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Code obfuscation — It’s elusive!

Hard to pin down exactly what obfuscation is

Hard to devise practically useful algorithms

Hard to evaluate the quality of these algorithms.
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Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

static obfuscation ⇒ obfuscated programs that remain fixed
at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging, emulation,
tracing).

dynamic obfuscators ⇒ transform programs continuously at
runtime, keeping them in constant flux.

tries to thwart dynamic analysis
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Code obfuscation — Overview

1 Simple obfuscating transformations.
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2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

5 Data transformations.

6 Abstraction transformations.

7 Constructing opaque predicates.

8 Dynamic obfuscating transformations.
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Algorithm obfTP: Identifier renaming

Java released 1996 :

decompilation is easy!
compiled code ⇔ source!

Hans Peter Van Vliet
1 released Crema a Java obfuscator .
2 released Mocha Java decompiler .
3 RIP

It’s an obfuscator/decompiler war!
1 HoseMocha kills Mocha (add an instruction after return);
2 Rename identifiers using characters that are legal in the JVM,

but not in Java source.
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Renaming Example

✞ ☎
int modexp (

int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y)%n;

else

R = s;

s = R*R%n;

L = R;

k++;

}

return L;

}
✝ ✆

✞ ☎
int f1(

int x1 ,int x2[],

int x3 ,int x4) {

int x5 , x6;

int x7 = 0;

int x8 = 1;

while (x7 < x3) {

if (x2[x7 ] == 1)

x5 = (x8*x1)%x4;

else

x5 = x8;

x8 = x5*x5%x4;

x6 = x5;

x7++;

}

return x6;

}
✝ ✆
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Identifier renaming

Historical interest.

Decompiler can’t recover information which has been
removed!

Identifier renaming ⇒ no performance overhead!
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Algorithm obfTP

In an object-oriented language:

Use overloading!
Give as many declarations as possible the same name!

Identifier renaming 9/82



Algorithm obfTP

In an object-oriented language:

Use overloading!
Give as many declarations as possible the same name!

Algorithm by Paul Tyma:

Used in PreEmptive Solutions’ Dash0 Java obfuscator.
Licensed by Microsoft for Visual Studio
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Algorithm obfTP

Java naming rules:
1 Class names should be globally unique,
2 Field names should be unique within classes
3 Methods with different signatures can have the same name.
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Algorithm obfTP

Java naming rules:
1 Class names should be globally unique,
2 Field names should be unique within classes
3 Methods with different signatures can have the same name.

Algorithm
1 Build a graph:

nodes are declarations
edges between nodes that cannot have the same name

2 Merge methods that must have the same name (because they
override each other) into super-nodes.

3 Color the graph with the smallest number of colors (=names)!
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Algorithm obfTP: Original program

✞ ☎
class Felinae {

int color ;

int speed ;

public void move(int x,int y){}

}

class Felis extends Felinae {

public void move(int x,int y){}

public void meow(int tone ,int length ){}

}

class Pantherinae extends Felinae {

public void move(int x,int y){}

public void growl(int tone ,int length ){}

}

class Panthera extends Pantherinae {

public void move(int x,int y){}

}
✝ ✆
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Algorithm obfTP: Interference graph

✞ ☎
class Felinae {

int color ;

int speed ;

void move(int x,int y)

}

class Felis extends Felinae {

void move(int x,int y){}

void meow(int tone ,int len )

}

class Pantherinae extends Felinae {

void move(int x,int y){}

void growl(int tone ,int len)

}

class Panthera extends Pantherinae {

void move(int x,int y)

}
✝ ✆

PantheraFelis

Pantherinae

speedcolor

Felis.meow

Pantherinae.growl

Felinae

Felis.move
Felinae.move

Pantherinae.move
Panthera.move
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Algorithm obfTP: Renamed program

PantheraFelis

Pantherinae

speedcolor

Felis.meow

Pantherinae.growl

Felinae

Felis.move
Felinae.move

Pantherinae.move
Panthera.move

✞ ☎
class Pink {

int Pink;

int Blue;

public void Blue(int x,int y){}

}

class Blue extends Pink {

public void Blue(int x,int y){}

public void Pink(int tone ,int len ){}

}

class Green extends Pink {

public void Blue(int x,int y){}

public void Pink(int tone ,int len ){}

}

class Yellow extends Green {

public void Blue(int x,int y){}

}
✝ ✆
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Complicating control flow

Transformations that make it difficult for an adversary to
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Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program
3 hide the targets of branches to make it difficult for the

adversary to build control-flow graphs

None of these transformations are immune to attacks,
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Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
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Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Notation:

PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v

Graphical notation:

true false true false true falseP?PT PF

Building blocks for many obfuscations.
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Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T
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Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T

An opaquely indeterminate predicate:

falsetrue
x mod 2 = 0?
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Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”
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Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

∀x , y ∈ Z : x2 − 34y2 6= 1

∀x ∈ Z : 2|x2 + x

. . .

Complicating control flow 18/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
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Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken
3 branches which will sometimes be taken and sometimes not,

but where this doesn’t matter

The resilience reduces to the resilience of the opaque
predicates.

Complicating control flow 19/82



Algorithm obfCTJbogus: Inserting bogus control-flow

It seems that the blue block is only sometimes executed:

true false
PT
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Algorithm obfCTJbogus: Inserting bogus control-flow

A bogus block (green) appears as it might be executed while,
in fact, it never will:

true falsePT
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Algorithm obfCTJbogus: Inserting bogus control-flow

Sometimes execute the blue block, sometimes the green block.

The green and blue blocks should be semantically equivalent.

true falseP?
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Algorithm obfCTJbogus: Inserting bogus control-flow

Extend a loop condition P by conjoining it with an opaquely
true predicate PT :

true

false

false

false truetrue
P P PT
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Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.
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Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

Known as chenxify, chenxification, after Chenxi Wang:
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✞ ☎
int modexp (int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆

if (k<w)

if (x[k]==1) 

s=R*R mod n
L = R

k++

R=sR=(s*y) mod n

s=1
k=0

return L

B6 :

B1 :

B2 :

B5 :

goto B1

B4 :B3 :

B0 :



✞ ☎
int modexp (int y, int x[], int w, int n) {

int R, L, k, s;

int next =0;

for (;;)

switch (next ) {

case 0 : k=0; s=1; next =1; break ;

case 1 : if (k<w) next =2; else next =6; break;

case 2 : if (x[k]==1) next =3; else next =4; break;

case 3 : R=(s*y)%n; next =5; break;

case 4 : R=s; next =5; break;

case 5 : s=R*R%n; L=R; k++; next =1; break ;

case 6 : return L;

}

}
✝ ✆



next=3

if (k<w)

else

next=2

next=6

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

if (x[k]==1)

else

next=4

B5

B6

B0

B1

B3 B4

B2



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.
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Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?
1 Keep tight loops as one switch entry.
2 Use gcc’s labels-as-values ⇒ a jump table lets you jump

directly to the next basic block.

Complicating control flow 28/82



Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
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Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis
2 constant-propagation data-flow analysis

Complicating control flow 29/82



Compute next as an opaque predicate!

✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next=E=0 ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=E=1 ; break ;
case 1 : i f ( k<w) next=E=2 ; e l s e next=E=6 ; break ;
case 2 : i f ( x [ k ]==1) next=E=3 ; e l s e next=E=4 ;

break ;
case 3 : R=(s ∗y)%n ; next=E=5 ; break ;
case 4 : R=s ; next=E=5 ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=E=1 ; break ;
case 6 : r e tu rn L ;

}
}

✝ ✆
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✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next =0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3} ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=g [0]% g [ 1 ] =1 ; break ;
case 1 : i f ( k<w) next=g [ g [ 2 ] ] =2 ;

e l s e next=g [0]−2∗ g [ 2 ] =6 ; break ;
case 2 : i f ( x [ k ]==1) next=g [3]−g [ 2 ] =3 ;

e l s e next=2∗g [ 2 ] =4 ; break ;
case 3 : R=(s ∗y)%n ; next=g [4]+ g [ 2 ] =5 ; break ;
case 4 : R=s ; next=g [0]−g [ 3 ] =5 ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=g [ g [4 ] ]% g [ 2 ] =1 ;

break ;
case 6 : r e tu rn L ;

}
}

✝ ✆



Modify the array at runtime!

A function that rotates an array one step right:
✞ ☎

void permute ( i n t g [ ] , i n t n , i n t ∗ m) {
i n t i ;
i n t tmp=g [ n−1] ;
f o r ( i=n−2; i >=0; i −−) g [ i +1] = g [ i ] ;
g [0]= tmp ;
∗m = ((∗m)+1)%n ;

}
✝ ✆

Make static array aliasing analysis harder for the attacker!

Modify the array at runtime!
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✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next =0;
i n t m=0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3} ;
f o r ( ; ; ) {

switch ( next ) {
case 0 : k=0; s =1; next=g [(0+m)%5]%g [(1+m)%5 ] ; break ;
case 1 : i f ( k<w) next=g [ ( g [(2+m)%5]+m)%5] ;

e l s e next=g [(0+m)%5]−2∗g [(2+m)%5 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [(3+m)%5]−g [(2+m)%5] ;

e l s e next=2∗g [(2+m)%5 ] ; break ;
case 3 : R=(s ∗y)%n ; next=g [(4+m)%5]+g [(2+m)%5 ] ; break ;
case 4 : R=s ; next=g [(0+m)%5]−g [(3+m)%5 ] ; break ;
case 5 : s=R∗R%n ; L=R ; k++;

next=g [ ( g [(4+m)%5]+m)%5]%g [(2+m)%5 ] ; break ;
case 6 : r e tu rn L ;
}
permute ( g ,5 ,&m) ;

}
}

✝ ✆



Make the array global!

✞ ☎

i n t g [ 2 0 ] ; i n t m;
i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {

i n t R , L , k , s ; i n t next =0;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=g [m+0]%g [m+1 ] ; break ;
case 1 : i f ( k<w) next=g [m+g [m+2 ] ] ;

e l s e next=g [m+0]−2∗g [m+2 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [m+3]−g [m+2] ;

e l s e next=2∗g [m+2 ] ; break ;
case 3 : R = ( s ∗y)%n ; next=g [m+4]+g [m+2 ] ; break ;
case 4 : R=s ; next=g [m+0]−g [m+3 ] ; break ;
case 5 : s = R∗R%n ; L=R ; k++;

next=g [m+g [m+4]]%g [m+2 ] ; break ;
case 6 : r e tu rn L ;

}
}

✝ ✆
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With the array global you can initialize it differently at different
call sites:

✞ ☎

g [ 0 ]=10 ; g [ 1 ]=9 ; g [ 2 ]=2 ; g [ 3 ]=5 ; g [ 4 ]=3 ; m=0;
modexp ( y , x , w , n ) ;
. . .

g [ 5 ]=10 ; g [ 6 ]=9 ; g [ 7 ]=2 ; g [ 8 ]=5 ; g [ 9 ]=3 ; m=5;
modexp ( y , x , w , n ) ;

✝ ✆



Sprinkle pointer variables (pink), pointer manipulations (blue),
dead code (green) over the program:

✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ; i n t next =0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3 , 42} ; i n t ∗ g2 ; i n t ∗ gr ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; g2=&g [ 2 ] ; s =1; next=g [0]% g [ 1 ] ;

gr=&g [ 5 ] ; break ;
case 1 : i f ( k<w) next=g [ ∗g2 ] ;

e l s e next=g [0]−2∗ g [ 2 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [3]−∗g2 ;

e l s e next=2∗∗g2 ; break ;
case 3 : R=(s ∗y)%n ; next=g [4]+ ∗g2 ; break ;
case 4 : R=s ; next=g [0]−g [ 3 ] ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=g [ g [4 ] ]% ∗g2 ; break ;
case 6 : r e tu rn L ;
case 7 : ∗ g2=666; next=∗gr %2; gr=&g [∗ g2 ] ; break ;
}

}
✝ ✆



Algorithm obfWHKDalias

Hopefully, because of the obfuscated manipulations the
attacker’s static analysis will conclude that nothing can be
deduced about next.
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Algorithm obfWHKDalias

Hopefully, because of the obfuscated manipulations the
attacker’s static analysis will conclude that nothing can be
deduced about next.

Not knowing next, he can’t rebuild the CFG.

Symbolic execution? We know next starts at 0...

Complicating control flow 37/82



obfWHKDopaque: Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

36 58 1 46 23 5 16 65 2 41 2 7 1 37 0 11 16 2 21

Invariants:

1 every third cell (in pink), starting will cell 0, is ≡ 1 mod 5;

2 cells 2 and 5 (green) hold the values 1 and 5, respectively;

3 every third cell (in blue), starting will cell 1, is ≡ 2 mod 7;

4 cells 8 and 11 (yellow) hold the values 2 and 7, respectively.

You can update a pink element as often as you want, with any
value you want, as long as you ensure that the value is always
≡ 1 mod 5!
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✞ ☎

i n t g [ ] = {36 ,58 ,1 , 46 ,23 ,5 , 16 ,65 ,2 , 41 ,
2 , 7 , 1 , 37 ,0 , 11 ,16 ,2 , 21 ,16} ;

i f ( ( g [ 3 ] % g [5])==g [ 2 ] )
p r i n t f ( ” t r u e !\ n” ) ;

g [ 5 ] = ( g [ 1 ] ∗ g [4 ] )% g [ 11 ] + g [6]%g [ 5 ] ;
g [ 14 ] = rand ( ) ;
g [ 4 ] = rand ( )∗ g [11]+g [ 8 ] ;

i n t s i x = ( g [ 4 ] + g [ 7 ] + g [10])% g [ 1 1 ] ;
i n t seven = s i x + g [3]%g [ 5 ] ;
i n t f o r t y two = s i x ∗ seven ;

✝ ✆

pink: opaquely true predicate.

blue: g is constantly changing at runtime.

green: an opaque value 42.

Initialize g at runtime!



obfLDK: Jumps through branch functions

Replace unconditional jumps with a call to a branch function .

Calls normally return to where they came from. . . But, a
branch function returns to the target of the jump!

...

call bf

bf() {

}
... b

b:

a

return to T [h(a)] + a

T [h(a)] = b − a

T [h(. . .)] = . . .

jmp b

b:

a:
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obfLDK: Make branches explicit

✞ ☎
int modexp (int y,int x[],

int w,int n) {

int R, L;

int k = 0; int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆
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obfLDK: Jumps through branch functions

A table T stores
T [h(ai)] = bi − ai .

Code in pink updated the return address!

The branch function:

✞ ☎
char* T[2];

void bf() {

char* old;

asm volatile ("movl 4(%% ebp ),%0\n\t" : "=r" ( old ));

char* new = ( char *)(( int)T[h(old)] + ( int)old );

asm volatile ("movl %0 ,4(%% ebp )\n\t" : : "r" (new ));

}
✝ ✆
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✞ ☎
int modexp (int y, int x[], int w, int n) {

int R, L; int k = 0; int s = 1;

T[h(&& retaddr1 )]=( char *)(&& endif -&& retaddr1 );
T[h(&& retaddr2 )]=( char *)(&& beginloop -&& retaddr2 );
beginloop :

if (k >= w) goto endloop ;

if (x[k] != 1) goto elsepart ;

R = (s*y) % n;

bf (); // goto endif ;

retaddr1 :

asm volatile (".ascii \" bogus \"\n\t");

elsepart :

R = s;

endif :

s = R*R % n;

L = R;

k++;

bf (); // goto beginloop;

retaddr2 :

endloop :

return L;

}
✝ ✆



obfLDK: Jumps through branch functions

Designed to confuse disassembly.

39% of instructions are incorrectly assembled using a linear
sweep disassembly.

25% for recursive disassembly.

Execution penalty: 13%

Increase in text segment size: 15%.
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Constructing opaque predicates

Construct them based on
number theoretic results

∀x , y ∈ Z : x2 − 34y2 6= 1
∀x ∈ Z : 2|x2 + x

the hardness of alias analysis
the hardness of concurrency analysis

Protect them by

making them hard to find
making them hard to break

If your obfuscator keeps a table of predicates, your adversary
will too!

Opaque Predicates 46/82



Algorithm obfCTJalias: Opaque predicates from pointer

aliasing
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computationally hard static analysis problem.
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Algorithm obfCTJalias: Opaque predicates from pointer

aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

We assume that
1 the attacker will analyze the program statically, and
2 we can force him to solve a particular static analysis problem

to discover the secret he’s after, and
3 we can generate an actual hard instance of this problem for

him to solve.

Of course, these assumptions may be false!
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Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 q2
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Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

delete

split insert

q1

q2

q1

q2

q1 q2

q2

q1
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Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

movedelete

split insert

q2

q1 q1

q2q2

q1

q1 q2

q2

q1
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Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Perform enough operations to confuse even the most precise
alias analysis algorithm,

Insert opaque queries such as (q1 6= q2)
T into the code.
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Algorithm obfCTJpointer: Opaque predicates from

concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.
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Algorithm obfCTJpointer: Opaque predicates from

concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

Keep a global data structure G with a certain set of invariants
I , to concurrently update G while maintaining I , and use I to
construct opaque predicates over G
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Opaque predicates from concurrency

badcba

move(a,b) move(c, d)

bad c

dc
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Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.
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Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Thread T2 updates c and d .

Opaquely true predicate (a = b)T is statically
indistinguishable from an opaquely false predicate (c = d)F !
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Encoding literal data

Literal data often carries much semantic information:
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Literal data often carries much semantic information:

"Please enter your password:"
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Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

Print each character one at a time?

Data encodings 54/82



Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)
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Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

The machine takes a bitstring and a state transition table as
input and and generates a string as output.

Mealy(102) produces "MIMI".

Mealy(1102) produces "MILA".
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Convert literals to code — Mealy machine

i/’l’

1/’i’

0/’a’

0/’i’

1/’b’

0/’m’

10

2 3

✞ ☎
int next [][2] =

{{1,2},

{3,0},

{3 ,2}};

char out [][2] =

{{’m’,’l’},

{’i’,’i’},

{’a’,’b’}};
✝ ✆

s0
i/o
−→ s1 means in state s0 on input i transfer to state s1 and

produce an o.

next[state][input]=next state

out[state][input]=output
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Mealy machine — table driven

✞ ☎
char* mealy(int v) {

char* str =(char *) malloc (10);

int state =0, len =0;

while ( state !=3) {

int input = 1&v; v >>= 1;

str [len ++]= out[state ][input ];

state = next[state ][ input ];

}

str [len ]=’\0’;

return str;

}
✝ ✆
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Mealy machine — hardcoded

✞ ☎
char* mealy (int v) {

char* str =( char*) malloc (10);

int state =0, len =0;

while (1) {

int input = 1&v; v >>= 1;

switch ( state ) {

case 0: state =( input ==0)?1:2;

str[len ++]=( input ==0)? ’m’:’l’; break;

case 1: state =( input ==0)?3:0;

str[len ++]= ’i’; break;

case 2: state =( input ==0)?3:2;

str[len ++]=( input ==0)? ’a’:’b’; break;

case 3: str[len ]=’\0’; return str;

}

}

}
✝ ✆
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Static vs. Dynamic obfuscation

Static obfuscations transform the code prior to execution.
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Static vs. Dynamic obfuscation

Statically obfuscated code: the attacker sees the same mess
every time.

Dynamic obfuscated code: the execution path changes as the
program runs.

Some algorithms are “semi-dynamic” — they perform a small,
constant number of transformations (often one) at runtime

Some algorithms are continuous: the code is in constant flux.
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Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an initial

configuration and add a runtime code-transformer .
2 At runtime , intersperse the execution of the program with

calls to the transformer.
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Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an initial

configuration and add a runtime code-transformer .
2 At runtime , intersperse the execution of the program with

calls to the transformer.

A dynamic obfuscator turns a “normal” program into a
self-modifying one.
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Modeling dynamic obfuscation — compile-time

P
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Modeling dynamic obfuscation — compile-time

Configuration
Create Initial

I

P P
′

Transformer I creates P’s initial configuration.

Dynamic Obfuscation 63/82



Modeling dynamic obfuscation — compile-time

Transformer
Embed Runtime

Configuration
Create Initial

I T

P P
′ P

′

T

Transformer I creates P’s initial configuration.

T is the runtime obfuscator, embedded in P ′.
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Modeling dynamic obfuscation — runtime

P
′

T

Transformer T continuously modifies P ′ at runtime.
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Modeling dynamic obfuscation — runtime

...P
′

T
P

′P
′

T T
P

′

T

Transformer T continuously modifies P ′ at runtime.
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Modeling dynamic obfuscation — runtime

P
′

T
P

′

T
P

′

T
P

′

T T
P

′

Transformer T continuously modifies P ′ at runtime.

We’d like an infinite, non-repeating series of configurations.

In practice, the configurations repeat.
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Dynamic obfuscation: Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.
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Dynamic obfuscation: Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.

The cells are divided into two regions in memory, upper and
lower.
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One step

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :
orig M0
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XOR!

⊕ =

⊕ =

⊕ =
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The Dynamic Primitive — Aucsmith
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Why does this work?

A B

⇓ B ← B ⊕ A

⇓ A← A⊕ B

⇓ B ← B ⊕ A
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obfCKSP: Code as key material

Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.
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obfCKSP: Code as key material

Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.

Extremes:
1 Decrypt the next instruction, execute it, re-encrypt it, . . . ⇒

only one instruction is ever in the clear!
2 Decrypt the entire program once, prior to execution, and leave

it in cleartext. ⇒ easy for the adversary to capture the code.
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obfCKSP: Code as key material

The entire program is encrypted — except for main.
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obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Before returning, a function decrypts its caller.

⇒ At most two functions are ever in the clear!
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obfCKSP: Code as key material

What do we use as key? The code itself!
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obfCKSP: Code as key material

What do we use as key? The code itself!

What cipher do we use? Something simple!
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obfCKSP: Code as key material

In the simplest case the call-graph is tree-shaped:

main

play

decodedecrypt

getkey
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obfCKSP: Code as key material

In the simplest case the call-graph is tree-shaped:

main

play

decodedecrypt

getkey

Before and after every procedure cally you insert calls to a
guard function that decrypts/re-encrypts the callee, using a
hash of the cleartext of the caller as key.
On entrance and exit of the callee you encrypt/decrypt the
caller using a hash of the cleartext of the callee as key.
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✞ ☎
int player_main (int argc , char *argv []) {

int user_key = 0 xca7ca115 ;

int digital_media [] = {10 ,102};

guard(play ,playSIZE ,player_main , player_mainSIZE);

play(user_key ,digital_media ,2);

guard(play ,playSIZE ,player_main , player_mainSIZE);

}

int getkey (int user_key ) {

guard(decrypt ,decryptSIZE ,getkey ,getkeySIZE );

int player_key = 0 xbabeca75 ;

int v = user_key ^ player_key ;

guard(decrypt ,decryptSIZE ,getkey ,getkeySIZE );

return v;

}

int decrypt (int user_key , int media ) {

guard(play ,playSIZE ,decrypt ,decryptSIZE );

guard(getkey ,getkeySIZE ,decrypt , decryptSIZE );

int key = getkey (user_key );

guard(getkey ,getkeySIZE ,decrypt , decryptSIZE );

int v = media ^ key;

guard(play ,playSIZE ,decrypt ,decryptSIZE );

return v;

}
✝ ✆



✞ ☎
float decode (int digital ) {

guard(play ,playSIZE ,decode ,decodeSIZE );

float v = ( float)digital ;

guard(play ,playSIZE ,decode ,decodeSIZE );

return v;

}

void play(int user_key , int digital_media[], int len ) {

int i;

guard(player_main ,player_mainSIZE ,play ,playSIZE );

for(i=0;i<len;i++) {

guard (decrypt ,decryptSIZE ,play ,playSIZE );

int digital = decrypt (user_key ,digital_media[i]);

guard (decrypt ,decryptSIZE ,play ,playSIZE );

guard (decode ,decodeSIZE ,play ,playSIZE );

printf ("%f\n",decode (digital ));

guard (decode ,decodeSIZE ,play ,playSIZE );

}

guard(player_main ,player_mainSIZE ,play ,playSIZE );

}
✝ ✆



✞ ☎

void c r y p t o ( waddr t proc , u i n t 32 key , i n t words ) {
i n t i ;
f o r ( i =1; i<words ; i ++) {
∗ proc ˆ= key ;
p roc++;

}
}

void guard ( waddr t proc , i n t proc words ,
waddr t key proc , i n t key words ) {

u i n t 32 key = hash1 ( key proc , key words ) ;
c r y p t o ( proc , key , p roc word s ) ;

}
✝ ✆



obfCKSP: Code as key material

So, what if the call-graph is shaped like a DAG, like this:

main

c1 c2

b1 b2

a

What key to use to decrypt a?
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So, what if the call-graph is shaped like a DAG, like this:

main

c1 c2

b1 b2

a

What key to use to decrypt a?

We can’t use the cleartext of the caller as key, because now
there are two callers!

Let the callers’ callers(c1 and c2) do the decryption using a
combination of the ciphertexts of b1 and b2.
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What if the program is recursive?

main

Dynamic Obfuscation 78/82



obfCKSP: Code as key material

What if the program is recursive?

main

Keep the entire cycle in cleartext. . . .
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Diversification — make every program unique to prevent
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Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Code Privacy — make programs hard to understand to
protect algorithms

Data Privacy — make programs hard to understand to
protect secret data (keys)

Integrity — make programs hard to understand to make them
hard to change
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Common Obfuscating Transformations

Many obfuscating transformations are built on some simple
general operations:

Splitting/Merging
Duplication
Reordering
Mapping
Indirection
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Common Obfuscating Transformations

Many obfuscating transformations are built on some simple
general operations:

Splitting/Merging
Duplication
Reordering
Mapping
Indirection

Apply these basic operations to

Control structures
Data structures
Abstractions
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Static VS. Dynamic Obfuscation

Static obfuscations confuse static analysis.

Dynamic obfuscations confuse static and dynamic analysis.

the code segment is treated as code and data

Dynamic algorithms generate self-modifying code. Bad for
performance:

1 flush instruction pipeline
2 write data caches to memory
3 invalidate instruction caches

Discussion 82/82
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