
Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Introduction 1/82



Code obfuscation — It’s elusive!

Hard to pin down exactly what obfuscation is

Introduction 2/82



Code obfuscation — It’s elusive!

Hard to pin down exactly what obfuscation is

Hard to devise practically useful algorithms

Introduction 2/82



Code obfuscation — It’s elusive!

Hard to pin down exactly what obfuscation is

Hard to devise practically useful algorithms

Hard to evaluate the quality of these algorithms.

Introduction 2/82



Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

Introduction 3/82



Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

Introduction 3/82



Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

static obfuscation ⇒ obfuscated programs that remain fixed
at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging, emulation,
tracing).

Introduction 3/82



Code obfuscation — what is it?

Informally, to obfuscate a program P means to transform it
into a program P ′ that is still executable but for which it is
hard to extract information.

“Hard?” ⇒ Harder than before!

static obfuscation ⇒ obfuscated programs that remain fixed
at runtime.

tries to thwart static analysis
attacked by dynamic techniques (debugging, emulation,
tracing).

dynamic obfuscators ⇒ transform programs continuously at
runtime, keeping them in constant flux.

tries to thwart dynamic analysis

Introduction 3/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

5 Data transformations.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

5 Data transformations.

6 Abstraction transformations.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

5 Data transformations.

6 Abstraction transformations.

7 Constructing opaque predicates.

Introduction 4/82



Code obfuscation — Overview

1 Simple obfuscating transformations.

2 How to design an obfuscation tool .

3 Definitions.

4 Control-flow transformations.

5 Data transformations.

6 Abstraction transformations.

7 Constructing opaque predicates.

8 Dynamic obfuscating transformations.

Introduction 4/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Identifier renaming 5/82



Algorithm obfTP: Identifier renaming

Java released 1996 :

decompilation is easy!
compiled code ⇔ source!

Identifier renaming 6/82



Algorithm obfTP: Identifier renaming

Java released 1996 :

decompilation is easy!
compiled code ⇔ source!

Hans Peter Van Vliet
1 released Crema a Java obfuscator .
2 released Mocha Java decompiler .
3 RIP

Identifier renaming 6/82



Algorithm obfTP: Identifier renaming

Java released 1996 :

decompilation is easy!
compiled code ⇔ source!

Hans Peter Van Vliet
1 released Crema a Java obfuscator .
2 released Mocha Java decompiler .
3 RIP

It’s an obfuscator/decompiler war!
1 HoseMocha kills Mocha (add an instruction after return);
2 Rename identifiers using characters that are legal in the JVM,

but not in Java source.

Identifier renaming 6/82



Renaming Example

✞ ☎
int modexp (

int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y)%n;

else

R = s;

s = R*R%n;

L = R;

k++;

}

return L;

}
✝ ✆

✞ ☎
int f1(

int x1 ,int x2[],

int x3 ,int x4) {

int x5 , x6;

int x7 = 0;

int x8 = 1;

while (x7 < x3) {

if (x2[x7 ] == 1)

x5 = (x8*x1)%x4;

else

x5 = x8;

x8 = x5*x5%x4;

x6 = x5;

x7++;

}

return x6;

}
✝ ✆

Identifier renaming 7/82



Identifier renaming

Historical interest.

Identifier renaming 8/82



Identifier renaming

Historical interest.

Decompiler can’t recover information which has been
removed!

Identifier renaming 8/82



Identifier renaming

Historical interest.

Decompiler can’t recover information which has been
removed!

Identifier renaming ⇒ no performance overhead!

Identifier renaming 8/82



Algorithm obfTP

In an object-oriented language:

Use overloading!
Give as many declarations as possible the same name!

Identifier renaming 9/82



Algorithm obfTP

In an object-oriented language:

Use overloading!
Give as many declarations as possible the same name!

Algorithm by Paul Tyma:

Used in PreEmptive Solutions’ Dash0 Java obfuscator.
Licensed by Microsoft for Visual Studio

Identifier renaming 9/82



Algorithm obfTP

Java naming rules:
1 Class names should be globally unique,
2 Field names should be unique within classes
3 Methods with different signatures can have the same name.

Identifier renaming 10/82



Algorithm obfTP

Java naming rules:
1 Class names should be globally unique,
2 Field names should be unique within classes
3 Methods with different signatures can have the same name.

Algorithm
1 Build a graph:

nodes are declarations
edges between nodes that cannot have the same name

2 Merge methods that must have the same name (because they
override each other) into super-nodes.

3 Color the graph with the smallest number of colors (=names)!

Identifier renaming 10/82



Algorithm obfTP: Original program

✞ ☎
class Felinae {

int color ;

int speed ;

public void move(int x,int y){}

}

class Felis extends Felinae {

public void move(int x,int y){}

public void meow(int tone ,int length ){}

}

class Pantherinae extends Felinae {

public void move(int x,int y){}

public void growl(int tone ,int length ){}

}

class Panthera extends Pantherinae {

public void move(int x,int y){}

}
✝ ✆

Identifier renaming 11/82



Algorithm obfTP: Interference graph

✞ ☎
class Felinae {

int color ;

int speed ;

void move(int x,int y)

}

class Felis extends Felinae {

void move(int x,int y){}

void meow(int tone ,int len )

}

class Pantherinae extends Felinae {

void move(int x,int y){}

void growl(int tone ,int len)

}

class Panthera extends Pantherinae {

void move(int x,int y)

}
✝ ✆

PantheraFelis

Pantherinae

speedcolor

Felis.meow

Pantherinae.growl

Felinae

Felis.move
Felinae.move

Pantherinae.move
Panthera.move

Identifier renaming 12/82



Algorithm obfTP: Renamed program

PantheraFelis

Pantherinae

speedcolor

Felis.meow

Pantherinae.growl

Felinae

Felis.move
Felinae.move

Pantherinae.move
Panthera.move

✞ ☎
class Pink {

int Pink;

int Blue;

public void Blue(int x,int y){}

}

class Blue extends Pink {

public void Blue(int x,int y){}

public void Pink(int tone ,int len ){}

}

class Green extends Pink {

public void Blue(int x,int y){}

public void Pink(int tone ,int len ){}

}

class Yellow extends Green {

public void Blue(int x,int y){}

}
✝ ✆

Identifier renaming 13/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Complicating control flow 14/82



Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,

Complicating control flow 15/82



Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program

Complicating control flow 15/82



Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program
3 hide the targets of branches to make it difficult for the

adversary to build control-flow graphs

Complicating control flow 15/82



Complicating control flow

Transformations that make it difficult for an adversary to
analyze the flow-of-control:

1 insert bogus control-flow,
2 flatten the program
3 hide the targets of branches to make it difficult for the

adversary to build control-flow graphs

None of these transformations are immune to attacks,

Complicating control flow 15/82



Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Complicating control flow 16/82



Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Notation:

PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v

Complicating control flow 16/82



Opaque Expressions

Simply put:

an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

Notation:

PT for an opaquely true predicate
PF for an opaquely false predicate
P? for an opaquely indeterminate predicate
E=v for an opaque expression of value v

Graphical notation:

true false true false true falseP?PT PF

Building blocks for many obfuscations.

Complicating control flow 16/82



Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T

Complicating control flow 17/82



Opaque Expressions

An opaquely true predicate:

true false
2|(x2 + x)T

An opaquely indeterminate predicate:

falsetrue
x mod 2 = 0?

Complicating control flow 17/82



Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

Complicating control flow 18/82



Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

∀x , y ∈ Z : x2 − 34y2 6= 1

Complicating control flow 18/82



Simple Opaque Predicates

Look in number theory text books, in the problems sections:

“Show that ∀x , y ∈ Z : p(x , y)”

∀x , y ∈ Z : x2 − 34y2 6= 1

∀x ∈ Z : 2|x2 + x

. . .

Complicating control flow 18/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken

Complicating control flow 19/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken

Complicating control flow 19/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken
3 branches which will sometimes be taken and sometimes not,

but where this doesn’t matter

Complicating control flow 19/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Insert bogus control-flow into a function:
1 dead branches which will never be taken
2 superfluous branches which will always be taken
3 branches which will sometimes be taken and sometimes not,

but where this doesn’t matter

The resilience reduces to the resilience of the opaque
predicates.

Complicating control flow 19/82



Algorithm obfCTJbogus: Inserting bogus control-flow

It seems that the blue block is only sometimes executed:

true false
PT

Complicating control flow 20/82



Algorithm obfCTJbogus: Inserting bogus control-flow

A bogus block (green) appears as it might be executed while,
in fact, it never will:

true falsePT

Complicating control flow 21/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Sometimes execute the blue block, sometimes the green block.

The green and blue blocks should be semantically equivalent.

true falseP?

Complicating control flow 22/82



Algorithm obfCTJbogus: Inserting bogus control-flow

Extend a loop condition P by conjoining it with an opaquely
true predicate PT :

true

false

false

false truetrue
P P PT

Complicating control flow 23/82



Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Complicating control flow 24/82



Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

Complicating control flow 24/82



Algorithm obfWHKD: Control-flow flattening

Removes the control-flow structure of functions.

Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

Known as chenxify, chenxification, after Chenxi Wang:

Complicating control flow 24/82



✞ ☎
int modexp (int y,int x[],

int w,int n) {

int R, L;

int k = 0;

int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆

if (k<w)

if (x[k]==1) 

s=R*R mod n
L = R

k++

R=sR=(s*y) mod n

s=1
k=0

return L

B6 :

B1 :

B2 :

B5 :

goto B1

B4 :B3 :

B0 :



✞ ☎
int modexp (int y, int x[], int w, int n) {

int R, L, k, s;

int next =0;

for (;;)

switch (next ) {

case 0 : k=0; s=1; next =1; break ;

case 1 : if (k<w) next =2; else next =6; break;

case 2 : if (x[k]==1) next =3; else next =4; break;

case 3 : R=(s*y)%n; next =5; break;

case 4 : R=s; next =5; break;

case 5 : s=R*R%n; L=R; k++; next =1; break ;

case 6 : return L;

}

}
✝ ✆



next=3

if (k<w)

else

next=2

next=6

next=5

R=(s*y)%n R=s

next=5

S=R*R%n

L=R

K++

next=1

return Lk=0
s=1

next=1

next=0

switch(next)

if (x[k]==1)

else

next=4

B5

B6

B0

B1

B3 B4

B2



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?
1 Keep tight loops as one switch entry.

Complicating control flow 28/82



Performance penalty

Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

Why?
1 The for loop incurs one jump,
2 the switch incurs a bounds check the next variable,
3 the switch incurs an indirect jump through a jump table.

Optimize?
1 Keep tight loops as one switch entry.
2 Use gcc’s labels-as-values ⇒ a jump table lets you jump

directly to the next basic block.

Complicating control flow 28/82



Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.

Complicating control flow 29/82



Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

Complicating control flow 29/82



Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis

Complicating control flow 29/82



Algorithm obfWHKDalias: Control-flow flattening

Attack against Chenxification:
1 Work out what the next block of every block is.
2 Rebuild the original CFG!

How does an attacker do this?
1 use-def data-flow analysis
2 constant-propagation data-flow analysis

Complicating control flow 29/82



Compute next as an opaque predicate!

✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next=E=0 ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=E=1 ; break ;
case 1 : i f ( k<w) next=E=2 ; e l s e next=E=6 ; break ;
case 2 : i f ( x [ k ]==1) next=E=3 ; e l s e next=E=4 ;

break ;
case 3 : R=(s ∗y)%n ; next=E=5 ; break ;
case 4 : R=s ; next=E=5 ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=E=1 ; break ;
case 6 : r e tu rn L ;

}
}

✝ ✆

Complicating control flow 30/82



✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next =0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3} ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=g [0]% g [ 1 ] =1 ; break ;
case 1 : i f ( k<w) next=g [ g [ 2 ] ] =2 ;

e l s e next=g [0]−2∗ g [ 2 ] =6 ; break ;
case 2 : i f ( x [ k ]==1) next=g [3]−g [ 2 ] =3 ;

e l s e next=2∗g [ 2 ] =4 ; break ;
case 3 : R=(s ∗y)%n ; next=g [4]+ g [ 2 ] =5 ; break ;
case 4 : R=s ; next=g [0]−g [ 3 ] =5 ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=g [ g [4 ] ]% g [ 2 ] =1 ;

break ;
case 6 : r e tu rn L ;

}
}

✝ ✆



Modify the array at runtime!

A function that rotates an array one step right:
✞ ☎

void permute ( i n t g [ ] , i n t n , i n t ∗ m) {
i n t i ;
i n t tmp=g [ n−1] ;
f o r ( i=n−2; i >=0; i −−) g [ i +1] = g [ i ] ;
g [0]= tmp ;
∗m = ((∗m)+1)%n ;

}
✝ ✆

Make static array aliasing analysis harder for the attacker!

Modify the array at runtime!

Complicating control flow 32/82



✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ;
i n t next =0;
i n t m=0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3} ;
f o r ( ; ; ) {

switch ( next ) {
case 0 : k=0; s =1; next=g [(0+m)%5]%g [(1+m)%5 ] ; break ;
case 1 : i f ( k<w) next=g [ ( g [(2+m)%5]+m)%5] ;

e l s e next=g [(0+m)%5]−2∗g [(2+m)%5 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [(3+m)%5]−g [(2+m)%5] ;

e l s e next=2∗g [(2+m)%5 ] ; break ;
case 3 : R=(s ∗y)%n ; next=g [(4+m)%5]+g [(2+m)%5 ] ; break ;
case 4 : R=s ; next=g [(0+m)%5]−g [(3+m)%5 ] ; break ;
case 5 : s=R∗R%n ; L=R ; k++;

next=g [ ( g [(4+m)%5]+m)%5]%g [(2+m)%5 ] ; break ;
case 6 : r e tu rn L ;
}
permute ( g ,5 ,&m) ;

}
}

✝ ✆



Make the array global!

✞ ☎

i n t g [ 2 0 ] ; i n t m;
i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {

i n t R , L , k , s ; i n t next =0;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; s =1; next=g [m+0]%g [m+1 ] ; break ;
case 1 : i f ( k<w) next=g [m+g [m+2 ] ] ;

e l s e next=g [m+0]−2∗g [m+2 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [m+3]−g [m+2] ;

e l s e next=2∗g [m+2 ] ; break ;
case 3 : R = ( s ∗y)%n ; next=g [m+4]+g [m+2 ] ; break ;
case 4 : R=s ; next=g [m+0]−g [m+3 ] ; break ;
case 5 : s = R∗R%n ; L=R ; k++;

next=g [m+g [m+4]]%g [m+2 ] ; break ;
case 6 : r e tu rn L ;

}
}

✝ ✆
Complicating control flow 34/82



With the array global you can initialize it differently at different
call sites:

✞ ☎

g [ 0 ]=10 ; g [ 1 ]=9 ; g [ 2 ]=2 ; g [ 3 ]=5 ; g [ 4 ]=3 ; m=0;
modexp ( y , x , w , n ) ;
. . .

g [ 5 ]=10 ; g [ 6 ]=9 ; g [ 7 ]=2 ; g [ 8 ]=5 ; g [ 9 ]=3 ; m=5;
modexp ( y , x , w , n ) ;

✝ ✆



Sprinkle pointer variables (pink), pointer manipulations (blue),
dead code (green) over the program:

✞ ☎

i n t modexp ( i n t y , i n t x [ ] , i n t w , i n t n ) {
i n t R , L , k , s ; i n t next =0;
i n t g [ ] = {10 , 9 , 2 , 5 , 3 , 42} ; i n t ∗ g2 ; i n t ∗ gr ;
f o r ( ; ; )

switch ( next ) {
case 0 : k=0; g2=&g [ 2 ] ; s =1; next=g [0]% g [ 1 ] ;

gr=&g [ 5 ] ; break ;
case 1 : i f ( k<w) next=g [ ∗g2 ] ;

e l s e next=g [0]−2∗ g [ 2 ] ; break ;
case 2 : i f ( x [ k ]==1) next=g [3]−∗g2 ;

e l s e next=2∗∗g2 ; break ;
case 3 : R=(s ∗y)%n ; next=g [4]+ ∗g2 ; break ;
case 4 : R=s ; next=g [0]−g [ 3 ] ; break ;
case 5 : s=R∗R%n ; L=R ; k++; next=g [ g [4 ] ]% ∗g2 ; break ;
case 6 : r e tu rn L ;
case 7 : ∗ g2=666; next=∗gr %2; gr=&g [∗ g2 ] ; break ;
}

}
✝ ✆



Algorithm obfWHKDalias

Hopefully, because of the obfuscated manipulations the
attacker’s static analysis will conclude that nothing can be
deduced about next.

Complicating control flow 37/82



Algorithm obfWHKDalias

Hopefully, because of the obfuscated manipulations the
attacker’s static analysis will conclude that nothing can be
deduced about next.

Not knowing next, he can’t rebuild the CFG.

Complicating control flow 37/82



Algorithm obfWHKDalias

Hopefully, because of the obfuscated manipulations the
attacker’s static analysis will conclude that nothing can be
deduced about next.

Not knowing next, he can’t rebuild the CFG.

Symbolic execution? We know next starts at 0...

Complicating control flow 37/82



obfWHKDopaque: Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

36 58 1 46 23 5 16 65 2 41 2 7 1 37 0 11 16 2 21

Invariants:

1 every third cell (in pink), starting will cell 0, is ≡ 1 mod 5;

2 cells 2 and 5 (green) hold the values 1 and 5, respectively;

3 every third cell (in blue), starting will cell 1, is ≡ 2 mod 7;

4 cells 8 and 11 (yellow) hold the values 2 and 7, respectively.

You can update a pink element as often as you want, with any
value you want, as long as you ensure that the value is always
≡ 1 mod 5!

Complicating control flow 38/82



✞ ☎

i n t g [ ] = {36 ,58 ,1 , 46 ,23 ,5 , 16 ,65 ,2 , 41 ,
2 , 7 , 1 , 37 ,0 , 11 ,16 ,2 , 21 ,16} ;

i f ( ( g [ 3 ] % g [5])==g [ 2 ] )
p r i n t f ( ” t r u e !\ n” ) ;

g [ 5 ] = ( g [ 1 ] ∗ g [4 ] )% g [ 11 ] + g [6]%g [ 5 ] ;
g [ 14 ] = rand ( ) ;
g [ 4 ] = rand ( )∗ g [11]+g [ 8 ] ;

i n t s i x = ( g [ 4 ] + g [ 7 ] + g [10])% g [ 1 1 ] ;
i n t seven = s i x + g [3]%g [ 5 ] ;
i n t f o r t y two = s i x ∗ seven ;

✝ ✆

pink: opaquely true predicate.

blue: g is constantly changing at runtime.

green: an opaque value 42.

Initialize g at runtime!



obfLDK: Jumps through branch functions

Replace unconditional jumps with a call to a branch function .

Calls normally return to where they came from. . . But, a
branch function returns to the target of the jump!

...

call bf

bf() {

}
... b

b:

a

return to T [h(a)] + a

T [h(a)] = b − a

T [h(. . .)] = . . .

jmp b

b:

a:

Complicating control flow 40/82



obfLDK: Make branches explicit

✞ ☎
int modexp (int y,int x[],

int w,int n) {

int R, L;

int k = 0; int s = 1;

while (k < w) {

if (x[k] == 1)

R = (s*y) % n;

else

R = s;

s = R*R % n;

L = R;

k++;

}

return L;

}
✝ ✆

Complicating control flow 41/82



obfLDK: Jumps through branch functions

A table T stores
T [h(ai)] = bi − ai .

Code in pink updated the return address!

The branch function:

✞ ☎
char* T[2];

void bf() {

char* old;

asm volatile ("movl 4(%% ebp ),%0\n\t" : "=r" ( old ));

char* new = ( char *)(( int)T[h(old)] + ( int)old );

asm volatile ("movl %0 ,4(%% ebp )\n\t" : : "r" (new ));

}
✝ ✆

Complicating control flow 42/82



✞ ☎
int modexp (int y, int x[], int w, int n) {

int R, L; int k = 0; int s = 1;

T[h(&& retaddr1 )]=( char *)(&& endif -&& retaddr1 );
T[h(&& retaddr2 )]=( char *)(&& beginloop -&& retaddr2 );
beginloop :

if (k >= w) goto endloop ;

if (x[k] != 1) goto elsepart ;

R = (s*y) % n;

bf (); // goto endif ;

retaddr1 :

asm volatile (".ascii \" bogus \"\n\t");

elsepart :

R = s;

endif :

s = R*R % n;

L = R;

k++;

bf (); // goto beginloop;

retaddr2 :

endloop :

return L;

}
✝ ✆



obfLDK: Jumps through branch functions

Designed to confuse disassembly.

39% of instructions are incorrectly assembled using a linear
sweep disassembly.

25% for recursive disassembly.

Execution penalty: 13%

Increase in text segment size: 15%.

Complicating control flow 44/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Opaque Predicates 45/82



Constructing opaque predicates

Construct them based on
number theoretic results

∀x , y ∈ Z : x2 − 34y2 6= 1
∀x ∈ Z : 2|x2 + x

the hardness of alias analysis
the hardness of concurrency analysis

Opaque Predicates 46/82



Constructing opaque predicates

Construct them based on
number theoretic results

∀x , y ∈ Z : x2 − 34y2 6= 1
∀x ∈ Z : 2|x2 + x

the hardness of alias analysis
the hardness of concurrency analysis

Protect them by

making them hard to find
making them hard to break

Opaque Predicates 46/82



Constructing opaque predicates

Construct them based on
number theoretic results

∀x , y ∈ Z : x2 − 34y2 6= 1
∀x ∈ Z : 2|x2 + x

the hardness of alias analysis
the hardness of concurrency analysis

Protect them by

making them hard to find
making them hard to break

If your obfuscator keeps a table of predicates, your adversary
will too!

Opaque Predicates 46/82



Algorithm obfCTJalias: Opaque predicates from pointer

aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

Opaque Predicates 47/82



Algorithm obfCTJalias: Opaque predicates from pointer

aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

We assume that
1 the attacker will analyze the program statically, and
2 we can force him to solve a particular static analysis problem

to discover the secret he’s after, and
3 we can generate an actual hard instance of this problem for

him to solve.

Opaque Predicates 47/82



Algorithm obfCTJalias: Opaque predicates from pointer

aliasing

Create an obfuscating transformation from a known
computationally hard static analysis problem.

We assume that
1 the attacker will analyze the program statically, and
2 we can force him to solve a particular static analysis problem

to discover the secret he’s after, and
3 we can generate an actual hard instance of this problem for

him to solve.

Of course, these assumptions may be false!

Opaque Predicates 47/82



Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 q2

Opaque Predicates 48/82



Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

split

q2q1

q2

q1

Opaque Predicates 48/82



Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

split insert

q2

q1

q1 q2

q2

q1

Opaque Predicates 48/82



Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

delete

split insert

q1

q2

q1

q2

q1 q2

q2

q1

Opaque Predicates 48/82



Algorithm obfCTJalias

Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

q1 and q2 point into two graphs G1 (pink) and G2 (blue):

movedelete

split insert

q2

q1 q1

q2q2

q1

q1 q2

q2

q1

Opaque Predicates 48/82



Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Opaque Predicates 49/82



Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Perform enough operations to confuse even the most precise
alias analysis algorithm,

Opaque Predicates 49/82



Algorithm obfCTJalias

Two invariants:

“G1 and G2 are circular linked lists”
“q1 points to a node in G1 and q2 points to a node in G2.”

Perform enough operations to confuse even the most precise
alias analysis algorithm,

Insert opaque queries such as (q1 6= q2)
T into the code.

Opaque Predicates 49/82



Algorithm obfCTJpointer: Opaque predicates from

concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Opaque Predicates 50/82



Algorithm obfCTJpointer: Opaque predicates from

concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

Opaque Predicates 50/82



Algorithm obfCTJpointer: Opaque predicates from

concurrency

Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

Keep a global data structure G with a certain set of invariants
I , to concurrently update G while maintaining I , and use I to
construct opaque predicates over G

Opaque Predicates 50/82



Opaque predicates from concurrency

badcba

move(a,b) move(c, d)

bad c

dc

Opaque Predicates 51/82



Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Opaque Predicates 52/82



Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Thread T2 updates c and d .

Opaque Predicates 52/82



Opaque predicates from concurrency

Thread T1 updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

Thread T2 updates c and d .

Opaquely true predicate (a = b)T is statically
indistinguishable from an opaquely false predicate (c = d)F !

Opaque Predicates 52/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Data encodings 53/82



Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Data encodings 54/82



Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Data encodings 54/82



Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Data encodings 54/82



Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

Data encodings 54/82



Encoding literal data

Literal data often carries much semantic information:

"Please enter your password:"

0xA17BC97A7E5F...FF67 (maybe a cryptographic key???)

Split up in pieces.

Xor with a constant.

Avoid ever reconstituting the literal in cleartext! (What about
printf?)

Print each character one at a time?

Data encodings 54/82



Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

Data encodings 55/82



Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

The machine takes a bitstring and a state transition table as
input and and generates a string as output.

Data encodings 55/82



Convert literals to code — Mealy machine

Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

The machine takes a bitstring and a state transition table as
input and and generates a string as output.

Mealy(102) produces "MIMI".

Mealy(1102) produces "MILA".

Data encodings 55/82



Convert literals to code — Mealy machine

i/’l’

1/’i’

0/’a’

0/’i’

1/’b’

0/’m’

10

2 3

✞ ☎
int next [][2] =

{{1,2},

{3,0},

{3 ,2}};

char out [][2] =

{{’m’,’l’},

{’i’,’i’},

{’a’,’b’}};
✝ ✆

s0
i/o
−→ s1 means in state s0 on input i transfer to state s1 and

produce an o.

next[state][input]=next state

out[state][input]=output

Data encodings 56/82



Mealy machine — table driven

✞ ☎
char* mealy(int v) {

char* str =(char *) malloc (10);

int state =0, len =0;

while ( state !=3) {

int input = 1&v; v >>= 1;

str [len ++]= out[state ][input ];

state = next[state ][ input ];

}

str [len ]=’\0’;

return str;

}
✝ ✆

Data encodings 57/82



Mealy machine — hardcoded

✞ ☎
char* mealy (int v) {

char* str =( char*) malloc (10);

int state =0, len =0;

while (1) {

int input = 1&v; v >>= 1;

switch ( state ) {

case 0: state =( input ==0)?1:2;

str[len ++]=( input ==0)? ’m’:’l’; break;

case 1: state =( input ==0)?3:0;

str[len ++]= ’i’; break;

case 2: state =( input ==0)?3:2;

str[len ++]=( input ==0)? ’a’:’b’; break;

case 3: str[len ]=’\0’; return str;

}

}

}
✝ ✆

Data encodings 58/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Dynamic Obfuscation 59/82



Static vs. Dynamic obfuscation

Static obfuscations transform the code prior to execution.

Dynamic Obfuscation 60/82



Static vs. Dynamic obfuscation

Static obfuscations transform the code prior to execution.

Dynamic algorithms transform the program at runtime .

Dynamic Obfuscation 60/82



Static vs. Dynamic obfuscation

Static obfuscations transform the code prior to execution.

Dynamic algorithms transform the program at runtime .

Static obfuscation counter attacks by static analysis.

Dynamic Obfuscation 60/82



Static vs. Dynamic obfuscation

Static obfuscations transform the code prior to execution.

Dynamic algorithms transform the program at runtime .

Static obfuscation counter attacks by static analysis.

Dynamic obfuscation counter attacks by dynamic analysis.

Dynamic Obfuscation 60/82



Static vs. Dynamic obfuscation

Statically obfuscated code: the attacker sees the same mess
every time.

Dynamic Obfuscation 61/82



Static vs. Dynamic obfuscation

Statically obfuscated code: the attacker sees the same mess
every time.

Dynamic obfuscated code: the execution path changes as the
program runs.

Dynamic Obfuscation 61/82



Static vs. Dynamic obfuscation

Statically obfuscated code: the attacker sees the same mess
every time.

Dynamic obfuscated code: the execution path changes as the
program runs.

Some algorithms are “semi-dynamic” — they perform a small,
constant number of transformations (often one) at runtime

Dynamic Obfuscation 61/82



Static vs. Dynamic obfuscation

Statically obfuscated code: the attacker sees the same mess
every time.

Dynamic obfuscated code: the execution path changes as the
program runs.

Some algorithms are “semi-dynamic” — they perform a small,
constant number of transformations (often one) at runtime

Some algorithms are continuous: the code is in constant flux.

Dynamic Obfuscation 61/82



Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an initial

configuration and add a runtime code-transformer .
2 At runtime , intersperse the execution of the program with

calls to the transformer.

Dynamic Obfuscation 62/82



Dynamic Obfuscation: Definitions

A dynamic obfuscator runs in two phases:
1 At compile-time transform the program to an initial

configuration and add a runtime code-transformer .
2 At runtime , intersperse the execution of the program with

calls to the transformer.

A dynamic obfuscator turns a “normal” program into a
self-modifying one.

Dynamic Obfuscation 62/82



Modeling dynamic obfuscation — compile-time

P

Dynamic Obfuscation 63/82



Modeling dynamic obfuscation — compile-time

Configuration
Create Initial

I

P P
′

Transformer I creates P’s initial configuration.

Dynamic Obfuscation 63/82



Modeling dynamic obfuscation — compile-time

Transformer
Embed Runtime

Configuration
Create Initial

I T

P P
′ P

′

T

Transformer I creates P’s initial configuration.

T is the runtime obfuscator, embedded in P ′.

Dynamic Obfuscation 63/82



Modeling dynamic obfuscation — runtime

P
′

T

Transformer T continuously modifies P ′ at runtime.

Dynamic Obfuscation 64/82



Modeling dynamic obfuscation — runtime

T
P

′P
′

T

Transformer T continuously modifies P ′ at runtime.

Dynamic Obfuscation 64/82



Modeling dynamic obfuscation — runtime

P
′

T
P

′

T
P

′

T

Transformer T continuously modifies P ′ at runtime.

Dynamic Obfuscation 64/82



Modeling dynamic obfuscation — runtime

T
P

′

T
P

′P
′

T T
P

′

Transformer T continuously modifies P ′ at runtime.

Dynamic Obfuscation 64/82



Modeling dynamic obfuscation — runtime

...P
′

T
P

′P
′

T T
P

′

T

Transformer T continuously modifies P ′ at runtime.

Dynamic Obfuscation 64/82



Modeling dynamic obfuscation — runtime

P
′

T
P

′

T
P

′

T
P

′

T T
P

′

Transformer T continuously modifies P ′ at runtime.

We’d like an infinite, non-repeating series of configurations.

In practice, the configurations repeat.

Dynamic Obfuscation 64/82



Dynamic obfuscation: Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.

Dynamic Obfuscation 65/82



Dynamic obfuscation: Aucsmith’s algorithm

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

A function is split into cells.

The cells are divided into two regions in memory, upper and
lower.

Dynamic Obfuscation 65/82



One step

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :

C0 :

C1 :

C2 :

C3 :

C4 :

C5 :
orig M0

Dynamic Obfuscation 66/82



XOR!

⊕ =

⊕ =

⊕ =

Dynamic Obfuscation 67/82



The Dynamic Primitive — Aucsmith

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



The Dynamic Primitive — Aucsmith





























































































⊗

Dynamic Obfuscation 68/82



Why does this work?

A B

Dynamic Obfuscation 69/82



Why does this work?

A B

⇓ B ← B ⊕ A

Dynamic Obfuscation 69/82



Why does this work?

A B

⇓ B ← B ⊕ A

⇓ A← A⊕ B

Dynamic Obfuscation 69/82



Why does this work?

A B

⇓ B ← B ⊕ A

⇓ A← A⊕ B

⇓ B ← B ⊕ A

Dynamic Obfuscation 69/82



obfCKSP: Code as key material

Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.

Dynamic Obfuscation 70/82



obfCKSP: Code as key material

Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.

Extremes:
1 Decrypt the next instruction, execute it, re-encrypt it, . . . ⇒

only one instruction is ever in the clear!

Dynamic Obfuscation 70/82



obfCKSP: Code as key material

Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.

Extremes:
1 Decrypt the next instruction, execute it, re-encrypt it, . . . ⇒

only one instruction is ever in the clear!
2 Decrypt the entire program once, prior to execution, and leave

it in cleartext. ⇒ easy for the adversary to capture the code.

Dynamic Obfuscation 70/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Before returning, a function decrypts its caller.

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

The entire program is encrypted — except for main.

Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Before returning, a function decrypts its caller.

⇒ At most two functions are ever in the clear!

Dynamic Obfuscation 71/82



obfCKSP: Code as key material

What do we use as key? The code itself!

Dynamic Obfuscation 72/82



obfCKSP: Code as key material

What do we use as key? The code itself!

What cipher do we use? Something simple!

Dynamic Obfuscation 72/82



obfCKSP: Code as key material

In the simplest case the call-graph is tree-shaped:

main

play

decodedecrypt

getkey

Dynamic Obfuscation 73/82



obfCKSP: Code as key material

In the simplest case the call-graph is tree-shaped:

main

play

decodedecrypt

getkey

Before and after every procedure cally you insert calls to a
guard function that decrypts/re-encrypts the callee, using a
hash of the cleartext of the caller as key.

Dynamic Obfuscation 73/82



obfCKSP: Code as key material

In the simplest case the call-graph is tree-shaped:

main

play

decodedecrypt

getkey

Before and after every procedure cally you insert calls to a
guard function that decrypts/re-encrypts the callee, using a
hash of the cleartext of the caller as key.
On entrance and exit of the callee you encrypt/decrypt the
caller using a hash of the cleartext of the callee as key.

Dynamic Obfuscation 73/82



✞ ☎
int player_main (int argc , char *argv []) {

int user_key = 0 xca7ca115 ;

int digital_media [] = {10 ,102};

guard(play ,playSIZE ,player_main , player_mainSIZE);

play(user_key ,digital_media ,2);

guard(play ,playSIZE ,player_main , player_mainSIZE);

}

int getkey (int user_key ) {

guard(decrypt ,decryptSIZE ,getkey ,getkeySIZE );

int player_key = 0 xbabeca75 ;

int v = user_key ^ player_key ;

guard(decrypt ,decryptSIZE ,getkey ,getkeySIZE );

return v;

}

int decrypt (int user_key , int media ) {

guard(play ,playSIZE ,decrypt ,decryptSIZE );

guard(getkey ,getkeySIZE ,decrypt , decryptSIZE );

int key = getkey (user_key );

guard(getkey ,getkeySIZE ,decrypt , decryptSIZE );

int v = media ^ key;

guard(play ,playSIZE ,decrypt ,decryptSIZE );

return v;

}
✝ ✆



✞ ☎
float decode (int digital ) {

guard(play ,playSIZE ,decode ,decodeSIZE );

float v = ( float)digital ;

guard(play ,playSIZE ,decode ,decodeSIZE );

return v;

}

void play(int user_key , int digital_media[], int len ) {

int i;

guard(player_main ,player_mainSIZE ,play ,playSIZE );

for(i=0;i<len;i++) {

guard (decrypt ,decryptSIZE ,play ,playSIZE );

int digital = decrypt (user_key ,digital_media[i]);

guard (decrypt ,decryptSIZE ,play ,playSIZE );

guard (decode ,decodeSIZE ,play ,playSIZE );

printf ("%f\n",decode (digital ));

guard (decode ,decodeSIZE ,play ,playSIZE );

}

guard(player_main ,player_mainSIZE ,play ,playSIZE );

}
✝ ✆



✞ ☎

void c r y p t o ( waddr t proc , u i n t 32 key , i n t words ) {
i n t i ;
f o r ( i =1; i<words ; i ++) {
∗ proc ˆ= key ;
p roc++;

}
}

void guard ( waddr t proc , i n t proc words ,
waddr t key proc , i n t key words ) {

u i n t 32 key = hash1 ( key proc , key words ) ;
c r y p t o ( proc , key , p roc word s ) ;

}
✝ ✆



obfCKSP: Code as key material

So, what if the call-graph is shaped like a DAG, like this:

main

c1 c2

b1 b2

a

What key to use to decrypt a?

Dynamic Obfuscation 77/82



obfCKSP: Code as key material

So, what if the call-graph is shaped like a DAG, like this:

main

c1 c2

b1 b2

a

What key to use to decrypt a?

We can’t use the cleartext of the caller as key, because now
there are two callers!

Dynamic Obfuscation 77/82



obfCKSP: Code as key material

So, what if the call-graph is shaped like a DAG, like this:

main

c1 c2

b1 b2

a

What key to use to decrypt a?

We can’t use the cleartext of the caller as key, because now
there are two callers!

Let the callers’ callers(c1 and c2) do the decryption using a
combination of the ciphertexts of b1 and b2.

Dynamic Obfuscation 77/82



obfCKSP: Code as key material

What if the program is recursive?

main

Dynamic Obfuscation 78/82



obfCKSP: Code as key material

What if the program is recursive?

main

Keep the entire cycle in cleartext. . . .

Dynamic Obfuscation 78/82



Outline

1 Introduction
2 Identifier renaming
3 Complicating control flow

Inserting bogus control-flow
Control-flow flattening
Opaque values from array aliasing
Jumps through branch functions

4 Opaque Predicates
Opaque predicates from pointer aliasing

5 Data encodings
6 Dynamic Obfuscation

Self-Modifying State Machine
Code as key material

7 Discussion

Discussion 79/82



Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Discussion 80/82



Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Discussion 80/82



Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Code Privacy — make programs hard to understand to
protect algorithms

Discussion 80/82



Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Code Privacy — make programs hard to understand to
protect algorithms

Data Privacy — make programs hard to understand to
protect secret data (keys)

Discussion 80/82



Code Obfuscation — What’s it Good For?

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Code Privacy — make programs hard to understand to
protect algorithms

Data Privacy — make programs hard to understand to
protect secret data (keys)

Integrity — make programs hard to understand to make them
hard to change

Discussion 80/82



Common Obfuscating Transformations

Many obfuscating transformations are built on some simple
general operations:

Splitting/Merging
Duplication
Reordering
Mapping
Indirection

Discussion 81/82



Common Obfuscating Transformations

Many obfuscating transformations are built on some simple
general operations:

Splitting/Merging
Duplication
Reordering
Mapping
Indirection

Apply these basic operations to

Control structures
Data structures
Abstractions

Discussion 81/82



Static VS. Dynamic Obfuscation

Static obfuscations confuse static analysis.

Dynamic obfuscations confuse static and dynamic analysis.

the code segment is treated as code and data

Dynamic algorithms generate self-modifying code. Bad for
performance:

1 flush instruction pipeline
2 write data caches to memory
3 invalidate instruction caches

Discussion 82/82


	Introduction
	Identifier renaming
	Complicating control flow
	Inserting bogus control-flow
	Control-flow flattening
	Opaque values from array aliasing
	Jumps through branch functions

	Opaque Predicates
	Opaque predicates from pointer aliasing

	Data encodings
	Dynamic Obfuscation
	Self-Modifying State Machine
	Code as key material

	Discussion

