CSc 466/566

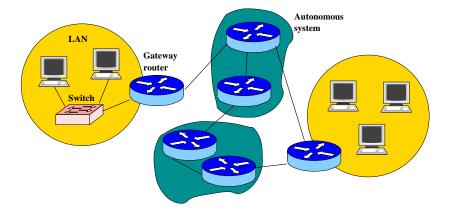
Computer Security

18 : Network Security — Introduction

Version: 2012/05/03 13:57:28

Department of Computer Science University of Arizona

collberg@gmail.com Copyright © 2012 Christian Collberg


Christian Collberg

Outline

Introduction

- Internet Protocol Layers
- Packets
- Network Security Issues
- 2 The Link Layer
 - Hubs and Switches
 - Ethernet Frames
 - ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- 4 The Transport Layer
 - TCP Session Hijacking
- 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks

Summary

- Computers are host nodes they send and receive messages.
- Routers are communication nodes they pass on messages.
- Local Area Network (LAN) private network of physically close computers.
- Wide Area Network (WAN) many physically separated machines/groups of machines.
- Autonomous Systems (AS) clusters of routers.

Autonomous Systems

- Controlled by a single organizational entity.
- Consist of clusters of routers.
- Routing within an AS is done by shortest route.
- Routing between ASs is by contractual agreements.

• Describes how bitstreams are transferred from one node to another over a physical medium.

- Describes how bitstreams are transferred from one node to another over a physical medium.
- Abstraction:

- Describes how bitstreams are transferred from one node to another over a physical medium.
- Abstraction:
 - Source/Destination: networking hardware

- Describes how bitstreams are transferred from one node to another over a physical medium.
- Abstraction:
 - Source/Destination: networking hardware
 - 2 Data: raw bits

- Describes how bitstreams are transferred from one node to another over a physical medium.
- Abstraction:
 - Source/Destination: networking hardware
 - 2 Data: raw bits
 - S Link: copper, coaxial, optical fiber, WiFi...

• Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes
 - 2 Data: frames

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes
 - 2 Data: frames
 - S Link: Ethernet, Wireless

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes
 - 2 Data: frames
 - Sink: Ethernet, Wireless
 - Addressing: Media Access Control Addresses (MAC).

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes
 - 2 Data: frames
 - Sink: Ethernet, Wireless
 - Addressing: Media Access Control Addresses (MAC).
- Detects errors occurring in the physical layer.

- Describes how collections of bits (frames) are transferred (on top of the physical layer) in a LAN.
- Abstraction:
 - Source/Destination: LAN nodes
 - 2 Data: frames
 - Sink: Ethernet, Wireless
 - Addressing: Media Access Control Addresses (MAC).
- Detects errors occurring in the physical layer.
- Finds a good routing path in the network.

• Describes how to move packets between any two hosts on the Internet.

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes
 - 2 Data: IP packets

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes
 - 2 Data: IP packets
 - **S** Addressing: Internet Protocol (IP) addresses.

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes
 - 2 Data: IP packets
 - **3** Addressing: Internet Protocol (IP) addresses.
- IPv4 32-bit addresses, IPv6 128-bit addresses.

- Describes how to move packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes
 - 2 Data: IP packets
 - **3** Addressing: Internet Protocol (IP) addresses.
- IPv4 32-bit addresses, IPv6 128-bit addresses.
- Best effort delivery no guarantees a packet will be delivered.

• Describes how to communicate between two applications (services) running on hosts on the Internet.

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:
 - Source/Destination: Ports connected to processes

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - Oddressing: IP address + port number

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - Oddressing: IP address + port number
- Transmission Control Protocol (TCP) connection-based protocol; guaranteed and ordered delivery of packets.

- Describes how to communicate between two applications (services) running on hosts on the Internet.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - Oddressing: IP address + port number
- Transmission Control Protocol (TCP) connection-based protocol; guaranteed and ordered delivery of packets.
- User Datagram Protocol (UDP) connection-less protocol; quick delivery without guarantees.

• Uses the transport layer to provide protocols that support useful functions on the Internet

- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:

- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:
 - HTTP web browsing over TCP

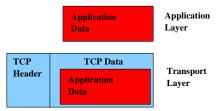
- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:
 - HTTP web browsing over TCP
 - DNS domain name lookup over UDP

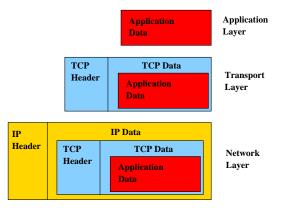
- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:
 - **HTTP** web browsing over TCP
 - ONS domain name lookup over UDP
 - SMTP/IMAP email over TCP

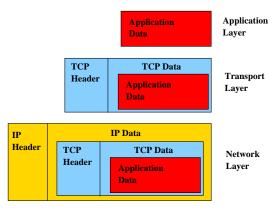
- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:
 - HTTP web browsing over TCP
 - DNS domain name lookup over UDP
 - SMTP/IMAP email over TCP
 - SSL encrypted connections over TCP

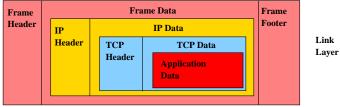
- Uses the transport layer to provide protocols that support useful functions on the Internet
- Examples:
 - HTTP web browsing over TCP
 - DNS domain name lookup over UDP
 - SMTP/IMAP email over TCP
 - SSL encrypted connections over TCP
 - **VoIP** Internet telephony over UDP.

Network Packets


- A packet consists of:
 - A header (metadata)
 - Payload (actual data)
 - 3 A footer (metadata, sometimes)
- Metadata routing and control information.


Packet Encapsulation


- The payload of each packet encapsulates the packet of a higher layer:
 - A frame packet encapsulates an IP packet.
 - An IP packet encapsulates a TCP/UDP packet.
 - In the second second



Application Layer

Packet Encapsulation — HTTP

- When Web browsing:
 - An HTTP packet would be contained in a TCP packet.
 - ② The TCP packet would be contained IP packet.
 - The IP packet would be contained in (for example) an Ethernet frame.

Networking Examples

- OSI model animation: http://www.youtube.com/watch?v=fiMswfo45DQ
- Animation Networking Tutorial:

http://www.youtube.com/watch?v=xV-Qq0aHs1o

- Packet data is not kept confidential.
- Two solutions:
 - Encrypt data at the application level (https);
 - Revise lower level protocol to include encryption (IPsec).

- Packet header/footers include simple checksums:
 - can detect a few communication bit errors;
 - not cryptographically strong.
- Two solutions:
 - MACs at the application level;
 - 2 Revise lower level protocol.

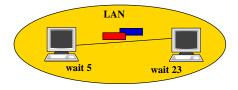
- Denial of Service attacks:
 - could be just Christmas rush on amazon.com!
 - concerted attacks.
- Two solutions:
 - Applications need to scale with communication requests;
 - Ø Block illegitimate requests.

- Assurance is the way in which trust is provided and managed in a system.
- Packets can travel between any two nodes in a network.
- Solution:
 - If we want to control packet flow, permissions have to be added on top of the network.
- Example:
 - Firewalls allows us to block flows of packets we don't trust from entering our system.

- Packets have no space for digital signatures!
- IP has no concept of identity.
- Two solutions:
 - Add signatures at application layer;
 - 2 Revise lower level layers.

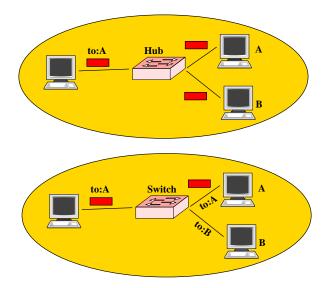
- No concept of identity on the Internet anonymous by default!
- Good for human rights worker.
- Not good when we can't identify a malicious user.
- Solutions:
 - Achieve higher level of anonymity by replicating processes in many places on the network.

Outline


Introduction

- Internet Protocol Layers
- Packets
- Network Security Issues
- 2 The Link Layer
 - Hubs and Switches
 - Ethernet Frames
 - ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- The Transport Layer
 - TCP Session Hijacking
- 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks

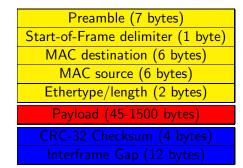
Summary


- The Link Layer sits on top of the physical layer.
- Ethernet IEEE 802.3.
- Ethernet cables connect computers on a LAN.
- Collision: Two computers on the same network segment send a packet at the same time.
- History of Ethernet: http://www.youtube.com/watch?v=g5MezxMcRmk.

Ethernet Collision

- Collision algorithm:
 - Each computer waits a random length of time;
 - 2 Retransmit!
 - S Another collision? Repeat from 1!

- Hubs and Switches connect devices on a LAN.
- Ethernet Hub:
 - Forward all frames to all attached devices.
 - Lots of extra traffic: all frames are duplicated!
 - All devices are on the same network segment, and must do collision avoidance.
- Ethernet Switch:
 - Initially works like a hub.
 - Over time, learns the addresses of attached devices.
 - Eventually, only forwards a frame to the destination device.
 - Fewer collisions.



- MAC address: 48 bits assigned to network interface.
- MAC structure:

locally assigned (1	manufacturer	(23	unique number (24
bit)	bits)		bits)

• Software (Unix: ifconfig) can change a device's MAC: locally assigned=1.

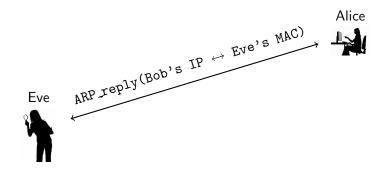
Ethernet Frame Format

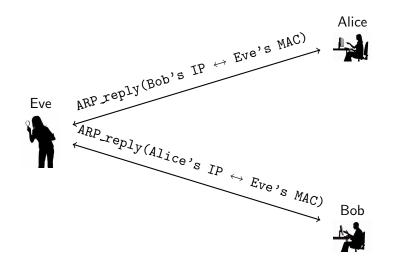
Ethernet Frame Format...

- The CRC-32 checksum can catch simple transmission errors.
- Switches learn the location of network devices from the MAC addresses.

- Address Resolution Protocol (ARP): Find the MAC address given the IP address.
- Algorithm (Bob wants to know the MAC address of IP address A):
 - Broadcast to all network interfaces: Who has IP address A?.
 - Wait for a response A is at MAC address M! from the devices with IP address A.
 - **3** Store $A \leftrightarrow M$ in the ARP cache.
- Problem: no authentication.

ARP Spoofing


- Any computer on the network could claim to have a particular IP address.
- Machines will update their ARP cache whenever they see an ARP reply — even if there was no corresponding ARP request !
- Attack:
 - **()** Eve sends ARP_reply(Bob's IP \leftrightarrow Eve's MAC) to Alice.
 - 2 Alice puts Bob's IP \leftrightarrow Eve's MAC in her ARP cache.
 - Solution Section 3.3 Eve sends ARP_reply(Alice's IP \leftrightarrow Eve's MAC) to Bob.
 - **4** Bob puts Alice's IP \leftrightarrow Eve's MAC in his ARP cache.



Bob's IP \leftrightarrow Eve's MAC

Bob's IP \leftrightarrow Eve's MAC

Alice's IP \leftrightarrow Eve's MAC

ARP Spoofing...

- After the ARP cache poisoning all traffic between Alice and Bob is routed through Eve:
 - MITM attack;
 - ② Denial of Service attack.

ARP Spoofing — Countermeasures

Restrict LAN access to trusted users.

- Restrict LAN access to trusted users.
- Other the constraints of the same MAC address on the LAN.

- Restrict LAN access to trusted users.
- Other the control of the same MAC address on the LAN.
- Static ARP tables: the system adminstrator manually sets up the routers' ARP caches.

- Restrict LAN access to trusted users.
- Oteck for multiple occurrences of the same MAC address on the LAN.
- Static ARP tables: the system adminstrator manually sets up the routers' ARP caches.
- Inspect all ARP packets, detecting attempted spoofing.

Outline

Introduction

- Internet Protocol Layers
- Packets
- Network Security Issues

2 The Link Layer

- Hubs and Switches
- Ethernet Frames
- ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- The Transport Layer
 - TCP Session Hijacking
- 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks

5 Summary

The Network Layer

- Best effort routing of packets between any two hosts on the Internet.
- Abstraction:
 - Source/Destination: Internet nodes
 - 2 Data: IP packets
 - **③** Addressing: Internet Protocol (IP) addresses.
- IPv4 32-bit addresses, IPv6 128-bit addresses.
- No guarantees a packet will be delivered.

Routing Algorithm — From a Host Node

- Sending a packet *P* from a host node *N*:
 - If *P*'s destination is on this LAN:
 - Use the ARP protocol to find the MAC address,
 - deliver directly.
 - Otherwise:
 - use the ARP protocol to find the MAC address of the gateway,
 - forward.

Routing Algorithm — From a Router

- Router gateways and other network nodes that handle routing of packages on the Internet.
- A router typically connects two or more LANs.
- Routing tables describe the next router to which a packet should be forwarded.

Router Operations

- For each packet, the router decides whether to
 - **Drop** expired packets (TTL=0) are dropped.
 - Deliver if the packet is going to a machine on this LAN, deliver it.
 - S Forward otherwise, send to neighboring router.
- TTL (time to live): a field in the IP header, decremented by each router, used to prevent packets from living forever.

Routing Table Protocols

• Open Shortest Path First (OSPF) — how should packets be routed *within* an autonomous system?

• packets should travel along shortest paths.

• Border Gateway Protocol (BGP) — how should packets be routed *between* autonomous systems?

• packets are routed based on contractual agreements.

• Routing animation: http://www.youtube.com/watch?v=RbY8Hb6abbg

Routing vs. Switch

- Switch:
 - forwards packets on a single LAN.
 - learns routes over time.
- Router:
 - can belong to multiple LANs.
 - uses routing tables to forward packets.

IPv4 Packet Format

Version (4 bits)				
Header length (4 bits)				
Service type (8 bits)				
Total length (16 bits)				
Identification (16 bits)				
Flags (3 bits)				
Fragment offset (13 bits)				
Time-to-Live (8 bits)				
Protocol (8 bits)				
Header Checksum (16 bits)				
Source Address (32 bits)				
Destination Address (32 bits)				
Payload				

IP Address Format

- IPv4 address: 32 bits.
- IPv4 address structure:

network portion | host portion

- Network portion: IP prefix for all machines on a network.
- Host portion: identifies a particular device
- Peter Packet & Subnetting:

http://www.youtube.com/watch?v=x-QC619KhQY&feature=related

- Class A Reserved for government organizations, telcos.
- Class B Reserved for ISPs, large businesses.
- Class C Reserved for smaller organizations.

Class	Leading	Size of	Size of	Number	Addresses
	bits	network	rest bit	of net-	per net-
		number	field	works	work
		bit field			
А	0	8	24	27	2 ²⁴
В	10	16	16	2 ¹⁴	2 ¹⁶
С	110	24	8	2 ²¹	2 ⁸

Class	Start address	End address
А	0.0.0.0	127.255.255.255
В	128.0.0.0	191.255.255.255
С	192.0.0.0	223.255.255.255

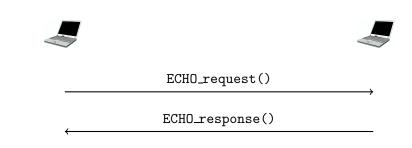
- Internet Control Message Protocol (ICMP) used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge receipt of packet.

- Internet Control Message Protocol (ICMP) used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge receipt of packet.
 - Echo response: packet receipt is acknowledged.

- Internet Control Message Protocol (ICMP) used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge receipt of packet.
 - **Echo response**: packet receipt is acknowledged.
 - **Time exceeded**: notify that packet has expired (TTL=0).

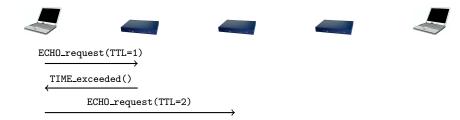
- Internet Control Message Protocol (ICMP) used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge receipt of packet.
 - Echo response: packet receipt is acknowledged.
 - Time exceeded: notify that packet has expired (TTL=0).
 - Destination unreachable: notify that packet could not be delivered.

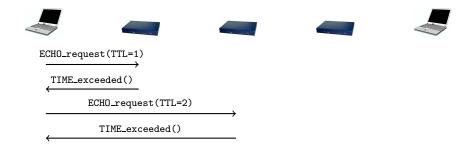
Ping Protocol

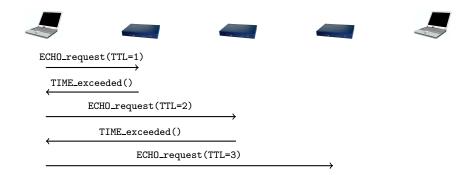

Ping Protocol

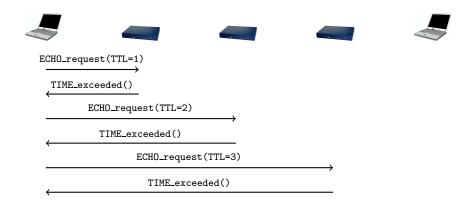
ECHO_request()

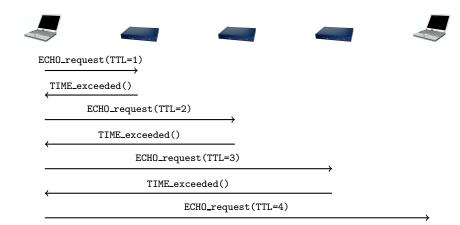
Ping Protocol

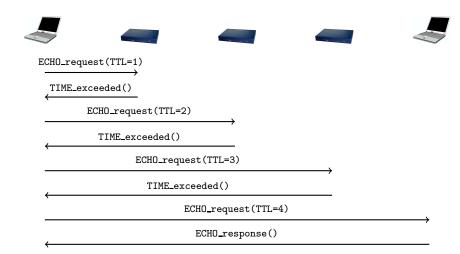

• Diagnostic tool too see if a host is working.

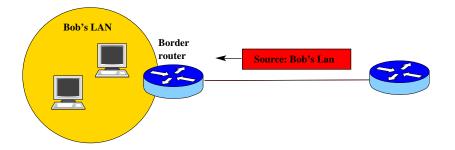

- How do we find the path a packet takes to a node N?
- Algorithm:
 - Send ECHO_request(TTL=1) to N.
 - A router that receives ECH0_request(TTL=1) responds with TIME_exceeded().
 - Send ECHO_request(TTL=2) to N.
 - Repeat, increasing TTL each time, until N is reached, responding with ECHO_response().





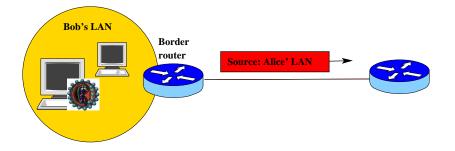




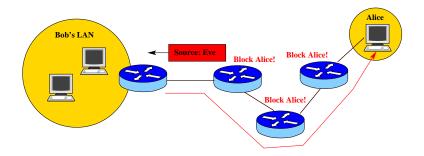


IP Spoofing

- The source address in an IP packet is never checked: overwrite it!
- The sender will never get a response! So, why? Denial of service attack.



Countermeasures to IP Spoofing


 Border router can block packets whose source address appears to be from inside the subnetwork, although they come from outside the subnetwork.

Countermeasures to IP Spoofing...

- Border router can block outgoing packets whose source address appears to be from outside the subnetwork.
- Maybe a node has been compromised by malware?

Countermeasures to IP Spoofing. . .

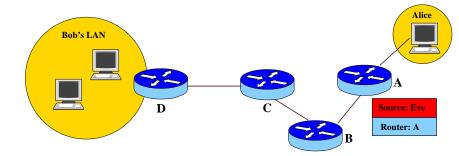
- IP Traceback determining the origin of a packet, without using the source field.
- Once we know the actual source address, we can ask
 - the ASs to block packets from this location.
 - the ISP controlling the source address to block suspicious machines.

IP Traceback Techniques...

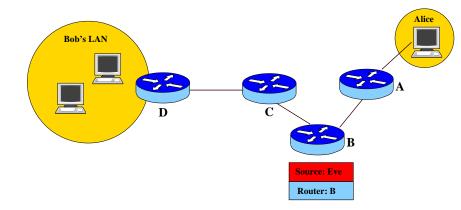
- Packet marking routers add information to packets, so that their path can be reconstructed.
- Naive approach: each router adds its address to the end of the packet:

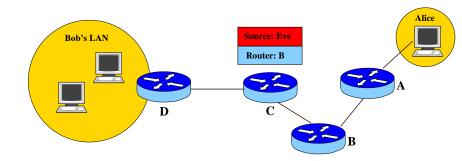

- Advantages: Easy to reconstruct path.
- Disadvantages: Router overhead, how to know if there's

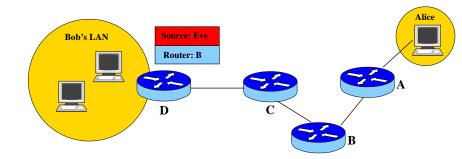
space in the packet?, packet fragmentation.


The Network Layer

Node sampling:


- Only one router address can be stored in the packet.
- A router writes its address with probability *p*.


• Given enough packets, the path can be reconstructed.


- Probability the packet will be marked by C: p
- Probability the packet will be marked by $B: p \cdot (1-p)$

- Probability the packet will be marked by C: p
- Probability the packet will be marked by B: $p \cdot (1-p)$

- Probability the packet will be marked by C: p
- Probability the packet will be marked by $B: p \cdot (1-p)$

- Probability the packet will be marked by C: p
- Probability the packet will be marked by $B: p \cdot (1-p)$

- Many other techniques have been proposed.
- Most not implemented require cooperation from Internet routers.

Outline

Introduction

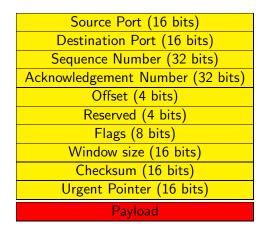
- Internet Protocol Layers
- Packets
- Network Security Issues
- 2 The Link Layer
 - Hubs and Switches
 - Ethernet Frames
 - ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- The Transport Layer
 - TCP Session Hijacking
 - 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks

Summary

• Communication between processes connected to ports.

- Communication between processes connected to ports.
- Abstraction:

- Communication between processes connected to ports.
- Abstraction:
 - Source/Destination: Ports connected to processes

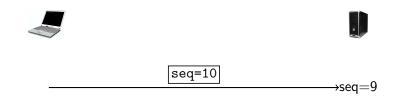

- Communication between processes connected to ports.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets

- Communication between processes connected to ports.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - Oddressing: IP address + port number

- Communication between processes connected to ports.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - O Addressing: IP address + port number
- Transmission Control Protocol (TCP) connection-based protocol; guaranteed and ordered delivery of packets.

- Communication between processes connected to ports.
- Abstraction:
 - Source/Destination: Ports connected to processes
 - 2 Data: TCP/UDP packets
 - Solution Addressing: IP address + port number
- Transmission Control Protocol (TCP) connection-based protocol; guaranteed and ordered delivery of packets.
- User Datagram Protocol (UDP) connection-less protocol; quick delivery without guarantees.

TCP Packet Format

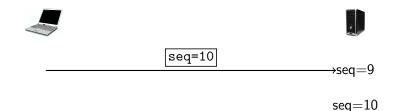


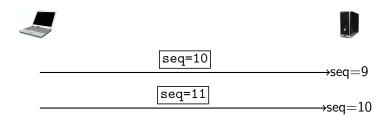
seq=9

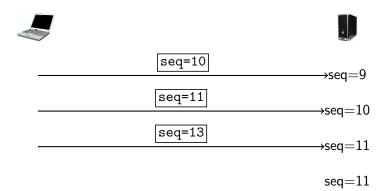
- Incremented for every packet by payload length.
- Allows us to determine when packets arrive out of order.
- Allows us to determine when packets don't arrive.

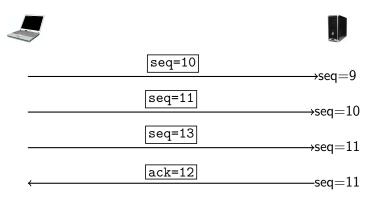
- Incremented for every packet by payload length.
- Allows us to determine when packets arrive out of order.
- Allows us to determine when packets don't arrive.

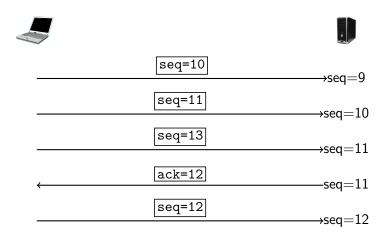
- seq=11
- Incremented for every packet by payload length.
- Allows us to determine when packets arrive out of order.
- Allows us to determine when packets don't arrive.



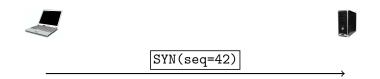

- Incremented for every packet by payload length.
- Allows us to determine when packets arrive out of order.
- Allows us to determine when packets don't arrive.

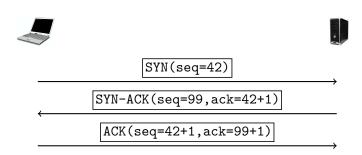






seq=11


seq=12


- TCP uses a 3-way handshake to set up a connection.
- The protocol includes a random initialization of the sequence number.

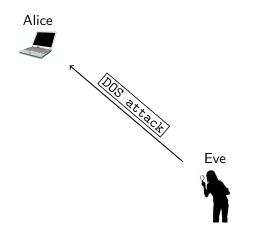
- TCP uses a 3-way handshake to set up a connection.
- The protocol includes a random initialization of the sequence number.

- TCP uses a 3-way handshake to set up a connection.
- The protocol includes a random initialization of the sequence number.

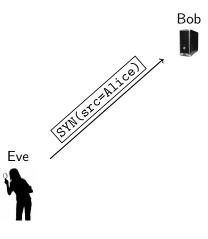
- TCP uses a 3-way handshake to set up a connection.
- The protocol includes a random initialization of the sequence number.

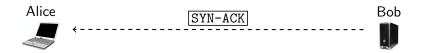
TCP Session Hijacking

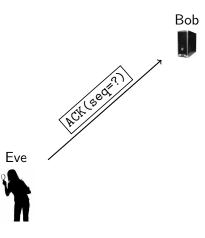
TCP Session Hijacking — an attacker
 hijacks another user's TCP connection;
 alters another user's TCP connection .

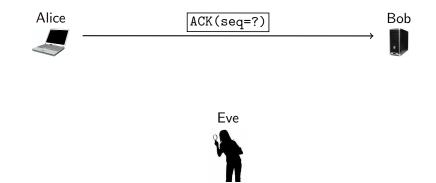

TCP Sequence Prediction Attack

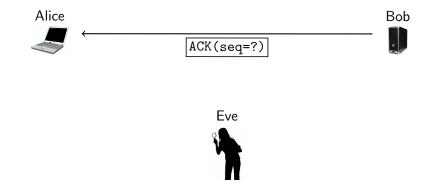
- Session spoofing The attacker is able to create a TCP session with a server, who thinks it is talking to another client.
- Early TCP implementations had easily guessable sequence numbers.
- Attack:
 - Eve launches a denial-of-service attack against Alice so she can't interfere with the attack.
 - Eve sends a SYN(src=Alice) to Bob.
 - Bob responds with a SYN-ACK to Alice, who cannot respond since she's under attack.
 - Eve guesses N, Bob's next sequence number.
 - S Eve sends a ACK(seq=N) to Bob.
 - O Eve talks to Bob as if she is Alice.
- Blind injection attack: Eve won't receive replies from Bob.

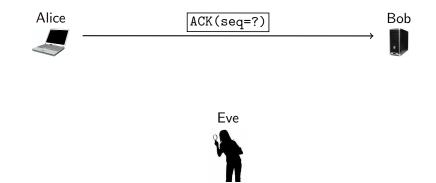


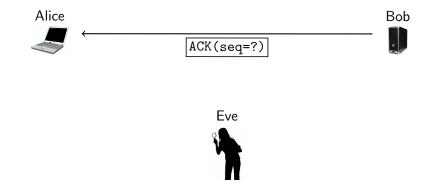


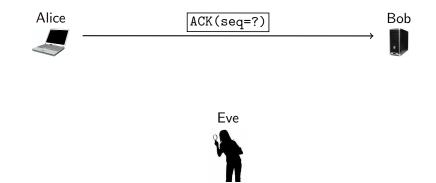


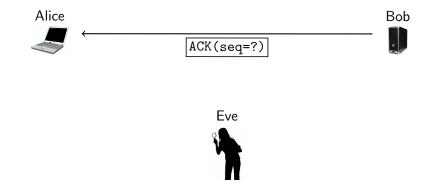


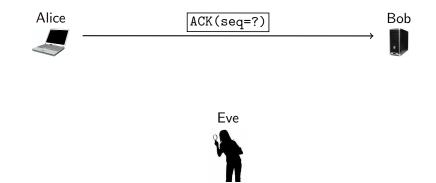

- Eve establishes a TCP connection with Bob, who thinks he's talking to Alice.
- Eve needs to guess the next sequence number Bob will use.

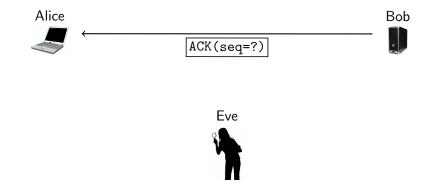

- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

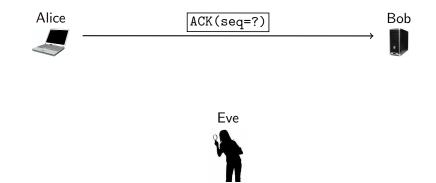

- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

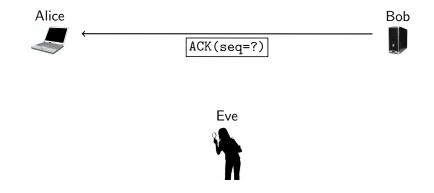

- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.


- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.


- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.


- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

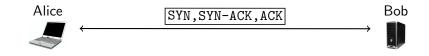

- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.


- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

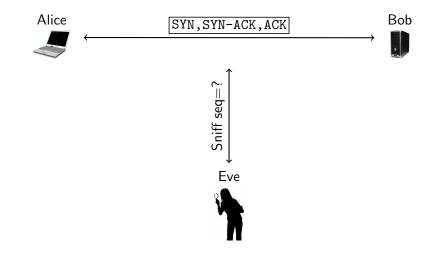
- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

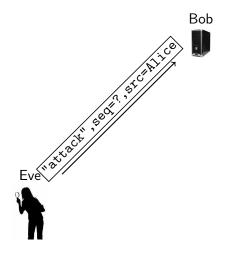
- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.

- Blind injection attacks can cause an ACK Storm, when the client and server try to resynchronize their sequence numbers.
- A firewall can, eventually, detect the ACK Storm.


The Transport Layer

- Eve is on the same network segment as Alice and Bob, and packet sniffs on them as they establish their TCP connection.
- Eve guesses the next sequence number and sends a spoofed attack command to Bob, appearing to be Alice.





- Don't use predictable sequence numbers.
- Encrypt at the network layer (IPsec).
- Encrypt at the application layer (https).

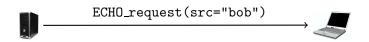
Outline

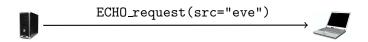
Introduction

- Internet Protocol Layers
- Packets
- Network Security Issues
- 2 The Link Layer
 - Hubs and Switches
 - Ethernet Frames
 - ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- The Transport Layer
 TCP Session Hijacking
- 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks
- 6 Summary

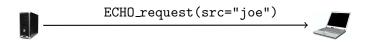
- Web servers have limited bandwidth.
- Once the server has used up bandwidth/CPU, it starts dropping requests.
- Denial-of-Service Attacks: Any attack that targets a machine/software's availability.
- Source addresses are spoofed to hide the attacker's identity.

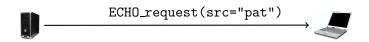
- The Internet Control Message Protocol is used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge reciept of packet.


- The Internet Control Message Protocol is used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge reciept of packet.
 - Echo response: packet receipt is acknowledged.


- The Internet Control Message Protocol is used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge reciept of packet.
 - **Echo response**: packet receipt is acknowledged.
 - **Time exceeded**: notify that packet has expired (TTL=0).

- The Internet Control Message Protocol is used for network diagnostics.
- ICMP messages:
 - Echo request: please acknowledge reciept of packet.
 - Echo response: packet receipt is acknowledged.
 - Time exceeded: notify that packet has expired (TTL=0).
 - Destination unreachable: notify that packet could not be delivered.



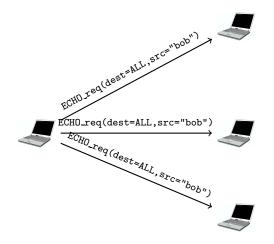


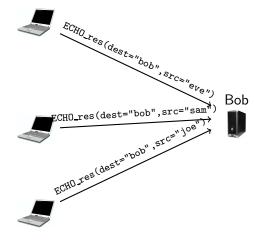
Smurf Attack

- A broadcast address sends to all IP addresses on the network.
- In a smurf attack, we get an amplification effect by creating an ECHO_request with a spoofed source address (of the target) and broadcasting this to all nodes on the network.
- Attack:
 - Broadcast the packet ECHO_request(src="target",dest="EVERYBODY") to the nodes on the network.

Smurf Attack

- A broadcast address sends to all IP addresses on the network.
- In a smurf attack, we get an amplification effect by creating an ECHO_request with a spoofed source address (of the target) and broadcasting this to all nodes on the network.
- Attack:
 - Broadcast the packet ECHO_request(src="target",dest="EVERYBODY") to the nodes on the network.
 - Each node N will respond with ECHO_response(src=N,dest="target").





• Countermeasures:

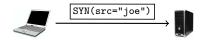
- Make hosts and routers ignore broadcasts.
- 2 Make servers ignore all PINGs.

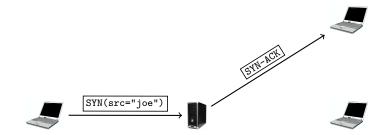
- Idea: Start lots of connections to a server, but never finish the SYN/SYN-ACK/ACK sequence, causing the server's memory to fill up.
- Attack:

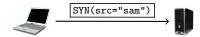
Eve sends a SYN(src="joe") packet to Alice's server.

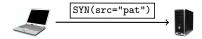
- Idea: Start lots of connections to a server, but never finish the SYN/SYN-ACK/ACK sequence, causing the server's memory to fill up.
- Attack:
 - Eve sends a SYN(src="joe") packet to Alice's server.
 - Server responds with SYN-ACK, sent to joe.

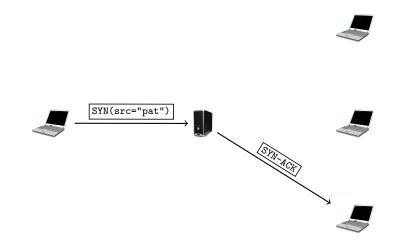
- Idea: Start lots of connections to a server, but never finish the SYN/SYN-ACK/ACK sequence, causing the server's memory to fill up.
- Attack:
 - Eve sends a SYN(src="joe") packet to Alice's server.
 - Server responds with SYN-ACK, sent to joe.
 - Seve repeats from 1.











- SYN Cookies (see the book).
- Microsoft Windows:
 - A special queue for half-open connections.
 - Don't allocate resources for the TCP connection until the ACK has been received.

Outline

Introduction

- Internet Protocol Layers
- Packets
- Network Security Issues
- 2 The Link Layer
 - Hubs and Switches
 - Ethernet Frames
 - ARP Spoofing
- 3 The Network Layer
 - ICPM
 - IP Spoofing
- The Transport Layer
 - TCP Session Hijacking
- 5 Denial-of-Service
 - ICPM Attacks
 - SYN Flood Attacks

Readings and References

• Chapter 5 in *Introduction to Computer Security*, by Goodrich and Tamassia.