
CSc 466/566

Computer Security

5 : Cryptography — Basics
Version: 2012/03/03 10:44:26

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2012 Christian Collberg

Christian Collberg

1/84

collberg@gmail.com

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Introduction 2/84

Block Ciphers

Block ciphers work on one block of data at a time. Different
ciphers use different block size and key length:

input (64 bits) DES output (64 bits)

key (56 bits)

Block Ciphers

Block ciphers work on one block of data at a time. Different
ciphers use different block size and key length:

input (64 bits) DES output (64 bits)

key (56 bits)

input (128 bits) AES output (128 bits)

key (128/192/256 bits)

Introduction 3/84

Misuses of Cryptosystem

Cryptographic systems are sensitive to the environment.

The strength of a cryptosystem depends on how it is used.

Just because a cryptosystem is mathematically strong doesn’t
mean it’s secure – it can be vulnerable to various attacks
when used incorrectly.

Attacks can be carried out in many ways besides guessing the
key.

Introduction 4/84

Misuses of Cryptosystem. . .

Precomputing the Possible Message: If the plaintexts is drawn
from a small set, attacker can just encipher all the
plaintexts using the public key and search the
intercepted ciphertext in database to find the
corresponding plaintext (dictionary attack).

Introduction 5/84

Misuses of Cryptosystem. . .

Precomputing the Possible Message: If the plaintexts is drawn
from a small set, attacker can just encipher all the
plaintexts using the public key and search the
intercepted ciphertext in database to find the
corresponding plaintext (dictionary attack).

Misordered Blocks: If different parts of ciphertext are not bound
together, the attacker can delete, replay and reorder
the ciphertext without being detected.

Introduction 5/84

Misuses of Cryptosystem. . .

Precomputing the Possible Message: If the plaintexts is drawn
from a small set, attacker can just encipher all the
plaintexts using the public key and search the
intercepted ciphertext in database to find the
corresponding plaintext (dictionary attack).

Misordered Blocks: If different parts of ciphertext are not bound
together, the attacker can delete, replay and reorder
the ciphertext without being detected.

Statistical Regularities: If each part of a message is enciphered
separately the ciphertext can give away information
about the structure of the message, even if the
message itself is unintelligible.

Introduction 5/84

Block Cipher: Performance Criteria

Key size – decides the upper bound of security using
exhaustive search.

Block size – larger block is harder to crack but more costly to
implementat.

Complexity of cryptographic mapping – affect the
implementation cost and real-time performance

Data expansion – it is desirable not to increase the size of the
data.

Introduction 6/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Modes of Operations 7/84

Block Cipher: Modes

Modes of operation deal with how to encrypt a message of
arbitrary length using a block cipher.

To be useful, a mode must be at least as secure and as
efficient as the underlying cipher.

The most common modes for block ciphers are:
1 Electronic Code Book (ECB)
2 Cipher Block Chaining (CBC)
3 Cipher Feedback (CFB)
4 Output Feedback(OFB)
5 Counter (CTR)

Modes of Operations 8/84

ECB Mode

Electronic Codebook

In ECB mode, each plaintext block is encrypted independently
with the block cipher.

Encryption:
Ci ← EK (Bi)

Decryption:
Bi ← DK (Ci)

Notation:

Bi is the i :th plaintext block.
Ci is the i :th ciphertext block.

Modes of Operations 9/84

B1

K EK

C1

C1

K DK

B1

B1 B2

K EK K EK

C1 C2

C1 C2

K DK K DK

B1 B2

B1 B2 B3

K EK K EK K EK

C1 C2 C3

C1 C2 C3

K DK K DK K DK

B1 B2 B3

ECB Mode: Analysis

Pros:
Simple.
Tolerates blocks lost in transit.
Easy to parallelize.

Cons:
Identical plaintext blocks (eg. blocks of sky in a jpg) result in
identical ciphertext ⇒ data patterns aren’t hidden.

Not suitable for encrypting message longer than one block.
Example (en.wikipedia.org/wiki/Block_cipher_modes_of_operation):

the Phantasy Star Online: Blue Burst online video
game uses Blowfish in ECB mode. Before the key
exchange system was cracked leading to even easier
methods, cheaters repeated encrypted monster

killed message packets, each an encrypted Blowfish
block, to illegitimately gain experience points
quickly.[citation needed]

Modes of Operations 11/84

en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Message Padding

What happens if the last plaintext block is not completely full?

Modes of Operations 12/84

Message Padding

What happens if the last plaintext block is not completely full?

The message must be padded to a multiple of the cipher
block size.

Modes of Operations 12/84

Message Padding

What happens if the last plaintext block is not completely full?

The message must be padded to a multiple of the cipher
block size.

One way to do this is to pad with 0:s and make the last byte
be the number of bytes to remove from the last block:

3bytes/24 bits

8bytes/64 bits

3 bytes of real data
in the last block

0 0 0 0 5

decrypting

Delete this # of
bytes after

n :

n:th block

n :

Modes of Operations 12/84

Message Padding. . .

With this method you have to pad every message, even if it
ends on a block boundary:

0 0 0 00 0 0 8

n :

n + 1 :

n :

Modes of Operations 13/84

Message Padding. . .

With this method you have to pad every message, even if it
ends on a block boundary:

0 0 0 00 0 0 8

n :

n + 1 :

n :

Another method called ciphertext stealing doesn’t add any
extra blocks.

Modes of Operations 13/84

CBC Mode

Cipher-Block Chaining

In CBC mode, each plaintext block is XORed with the
previous ciphertext block and then encrypted. An initialization
vector IV is used as a seed for encrypting the first block.

Initialization:
C0 ← IV

Encryption:
Ci ← EK (Bi ⊕ Ci−1)

Decryption:
Bi ← DK (Ci)⊕ Ci−1

Modes of Operations 14/84

B1

IV ⊕

K EK

C1

C1

K DK

IV ⊕

B1

B1 B2

IV ⊕ ⊕

K EK K EK

C1 C2

C1 C2

K DK K DK

IV ⊕ ⊕

B1 B2

B1 B2 B3

IV ⊕ ⊕ ⊕

K EK K EK K EK

C1 C2 C3

C1 C2 C3

K DK K DK K DK

IV ⊕ ⊕ ⊕

B1 B2 B3

CBC Mode: Analysis

Pros:

Identical plaintext blocks will yield different ciphertext blocks.
Decryption can be parallelized if all ciphertext blocks are
available.
If block Ci is lost, Ci+1 can’t be decrypted, but Ci+2 can.

Cons:

Encryption can’t be parallelized.

Most commonly used mode of operation.

A one-bit change in a plaintext or IV affects all following
ciphertext blocks.

Modes of Operations 16/84

CFB Mode

Cipher-FeedBack

In CFB mode, the previous ciphertext block is encrypted and
the output produced is combined with the plaintext block
using XOR to produce the current ciphertext block.

CFB can use feedback that is less than one full data block.

An initialization vector IV is used as a seed for the first block.

Initialization:
C0 ← IV

Encryption:
Ci ← EK (Ci−1)⊕ Bi

Decryption:
Bi ← EK (Ci−1)⊕ Ci

Modes of Operations 17/84

IV

K EK

B1 ⊕

C1

IV

K EK

⊕ C1

B1

IV

K EK K EK

B1 ⊕ B2 ⊕

C1 C2

IV

K EK K EK

⊕ C1 ⊕ C2

B1 B2

IV

K EK K EK K EK

B1 ⊕ B2 ⊕ B3 ⊕

C1 C2 C3

IV

K EK K EK K EK

⊕ C1 ⊕ C2 ⊕ C3

B1 B2 B3

CFB Mode: Analysis

Pros:

CFB mode is self-synchronizing similar to CBC.
Decryption can be parallelized.
Decryptor is never used.

Cons:

Encryption cannot be parallelized.
When decrypting, a one-bit change in the ciphertext corrupts
the following 2 plaintext blocks.
When decrypting, a one-bit change in the plaintext block,
corrupts 1 following plaintext block.

Modes of Operations 19/84

OFB Mode

Output-FeedBack Mode

OFB mode is similar to CFB mode except that the quantity
XORed with each plaintext block are vectors generated
independently of both the plaintext and ciphertext.

Stream cipher

Initialization:
V0 ← IV

Create vectors:
Vi ← EK (Vi−1);

Encryption:
Ci ← Vi ⊕ Bi ;

Decryption:
Bi ← Vi ⊕ Ci ;

Modes of Operations 20/84

IV

K EK

B1 ⊕

C1

IV

K EK

C1 ⊕

B1

IV

K EK K EK

B1 ⊕ B2 ⊕

C1 C2

IV

K EK K EK

C1 ⊕ C2 ⊕

B1 B2

IV

K EK K EK K EK

B1 ⊕ B2 ⊕ B3 ⊕

C1 C2 C3

IV

K EK K EK K EK

C1 ⊕ C2 ⊕ C3 ⊕

B1 B2 B3

OFB Mode: Analysis

Pros:

Encryption and decryption can be done in parallel if the
vectors have been precomputed.
If i :th ciphertext bit is flipped, the i :th plaintext bit is also
flipped. This property helps with many error correcting codes.

The keystream is plaintext independent.

Modes of Operations 22/84

CTR Mode

Counter Mode

CTR mode is similar to OFB: encryption is performed by
XORing with a pad.

Vectors are generated by encrypting
seed + 0, seed + 1, seed + 1, . . . given a random seed.

Create vectors:

Vi ← EK (seed + i − 1);

Encryption:
Ci ← Vi ⊕ Bi ;

Decryption:
Bi ← Vi ⊕ Ci ;

Modes of Operations 23/84

seed + 0

K EK

B1 ⊕

C1

seed + 0

K EK

C1 ⊕

B1

seed + 0 seed + 1

K EK K EK

B1 ⊕ B2 ⊕

C1 C2

seed + 0 seed + 1

K EK K EK

C1 ⊕ C2 ⊕

B1 B2

seed + 0 seed + 1 seed + 2

K EK K EK K EK

B1 ⊕ B2 ⊕ B3 ⊕

C1 C2 C3

seed + 0 seed + 1 seed + 2

K EK K EK K EK

C1 ⊕ C2 ⊕ C3 ⊕

B1 B2 B3

CTR Mode: Analysis

Pros:

Vector generation, encryption, decryption can be all be done in
parallel.
We can recover from dropped blocks.

Cons:

There are attacks (Hardware Fault Attack) that are based on
the use of simple counter function.

Modes of Operations 25/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Attacks on Block Ciphers 26/84

Attacks on Block Ciphers

Differential cryptanalysis: By careful analysis of the ciphertext of
two related plaintexts encrypted under the same key,
probabilities can be assigned to each of the possible
keys, and eventually the most probable key is
identified as the correct one.

Linear cryptanalysis: Use a linear approximation to describe the
behavior of the block cipher. Given sufficient pairs of
plaintext and corresponding ciphertext, bits of
information about the key can be obtained.

Weak keys: Weak keys are secret keys with a certain value for
which the block cipher in question will exhibit certain
regularities in encryption or, in other cases, a poor
level of encryption. For instance, with DES there are
four keys for which encryption is exactly the same as
decryption.

Attacks on Block Ciphers 27/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Modular Arithmetic 28/84

Modular Arithmetic

Block ciphers operate on blocks as large numbers.

We can’t deal with overflow: the output has to fit in the same
size block as the input.

We therefore perform arithmetic modulo n .

After each arithmetic operation return the remainder after
dividing by n.

We’re performing arithmetic in Zn:

Zn = {0, 1, 2, . . . , n − 1}

Modular Arithmetic 29/84

Modular Arithmetic

Addition, subtraction, multiplication are done by reducing the
result to values in Zn:

(a + b) mod n = ((a mod n) + (b mod n)) mod n

(a − b) mod n = ((a mod n)− (b mod n)) mod n

(a ∗ b) mod n = ((a mod n) ∗ (b mod n)) mod n

23 ≡ 11 mod 12

23 ≡ 2 mod 7

(10 + 13) mod 7 = ((10 mod 7) + (13 mod 7)) mod 7

= (3 + 6) mod 7 = 2

Modular Arithmetic 30/84

Modular Arithmetic: Addition

Addition table for Z10, (x + y) mod 10.

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

Modular Arithmetic 31/84

Modular Inverses

y is the modular inverse of x , modulo n, if

xy mod n = 1

Not every number in Zn has an inverse.

If n is prime then every number in Zn has an inverse.

Examples:
1 4 · 3 mod 11 = 12 mod 11 = 1 ⇒ 4 is the inverse of 3 in Z11.

Modular Arithmetic 32/84

Modular Inverses. . .

The inverse of 4 is 1
4 . Modular inverses are harder.

To find the the inverse of 4 modulo 7 we want to compute:

4 ∗ x = 1 mod 7

which is the same as finding integers x and k such that

4x = 7k + 1

This is also written: 4−1 = x mod n.

Sometimes inverses exist, sometimes not:

5−1 = 3 mod 14

2−1 = ? mod 14

Modular Arithmetic 33/84

Modular Inverses

Multiplication table for Z10, xy mod 10.

Elements that have a modular inverse have been highlighted.

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

Modular Arithmetic 34/84

Modular Inverses

Multiplication table for Z11, xy mod 11.

× 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

Modular Arithmetic 35/84

In-Class Exercise

Create the modular multiplication table for Z5, xy mod 5.

Modular Arithmetic 36/84

Modular Exponentiation

Modular exponentiation is an important operation in
cryptography:

xy mod n =

y
︷ ︸︸ ︷

x ∗ x ∗ · · · ∗ x modn

Modular Arithmetic 37/84

Modular Exponentiation. . .

For which x and n do there exist modular powers equal to 1?

xy mod n
?
= 1

If n is prime then every non-zero element of Zn has a power =
1.
If n is not prime, only x for which GCD(x , n) = 1 (x and n are
relatively prime) have a power = 1.

Example: For Z ∗

13

11 mod 13 = 1

212 mod 13 = 1

33 mod 13 = 1

46 mod 13 = 1

54 mod 13 = 1

612 mod 13 = 1
Modular Arithmetic 38/84

Modular Exponentiation. . .

Z ∗

n is the subset of Zn of elements relatively prime with n:

Z ∗

n = {x ∈ Zn such that GCD(x , n) = 1}

Examples:
1 Z ∗

10 = {1, 3, 7, 9}

Modular Arithmetic 39/84

Modular Exponentiation. . .

Z ∗

n is the subset of Zn of elements relatively prime with n:

Z ∗

n = {x ∈ Zn such that GCD(x , n) = 1}

Examples:
1 Z ∗

10 = {1, 3, 7, 9}
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Modular Arithmetic 39/84

Modular Exponentiation. . .

Z ∗

n is the subset of Zn of elements relatively prime with n:

Z ∗

n = {x ∈ Zn such that GCD(x , n) = 1}

Examples:
1 Z ∗

10 = {1, 3, 7, 9}
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Modular Arithmetic 39/84

Modular Exponentiation. . .

Z ∗

n is the subset of Zn of elements relatively prime with n:

Z ∗

n = {x ∈ Zn such that GCD(x , n) = 1}

Examples:
1 Z ∗

10 = {1, 3, 7, 9}
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

In general, Z ∗

n = {1, 2, . . . , n − 1} if n is prime

Modular Arithmetic 39/84

Modular Exponentiation. . .

Modular exponentiation table for Z10, xy mod 10.
Elements in Zn that have some power equal to 1 have been
highlighted.

y

1 2 3 4 5 6 7 8 9

1y 1 1 1 1 1 1 1 1 1

2y 2 4 8 6 2 4 8 6 2

3y 3 9 7 1 3 9 7 1 3

4y 4 6 4 6 4 6 4 6 4

5y 5 5 5 5 5 5 5 5 5

6y 6 6 6 6 6 6 6 6 6

7y 7 9 3 1 7 9 3 1 7

8y 8 4 2 6 8 4 2 6 8

9y 9 1 9 1 9 1 9 1 9

Modular Arithmetic 40/84

Modular Exponentiation: Z13, x
y mod 13

y

1 2 3 4 5 6 7 8 9 10 11 12

1y 1 1 1 1 1 1 1 1 1 1 1 1

2y 2 4 8 3 6 12 11 9 5 10 7 1

3y 3 9 1 3 9 1 3 9 1 3 9 1

4y 4 3 12 9 10 1 4 3 12 9 10 1

5y 5 12 8 1 5 12 8 1 5 12 8 1

6y 6 10 8 9 2 12 7 3 5 4 11 1

7y 7 10 5 9 11 12 6 3 8 4 2 1

8y 8 12 5 1 8 12 5 1 8 12 5 1

9y 9 3 1 9 3 1 9 3 1 9 3 1

10y 10 9 12 3 4 1 10 9 12 3 4 1

11y 11 4 5 3 7 12 2 9 8 10 6 1

12y 12 1 12 1 12 1 12 1 12 1 12 1
Modular Arithmetic 41/84

In-Class Exercise: Modular Exponentiation

Create the modular exponentiation table for Z5, xy mod 5.

Modular Arithmetic 42/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Number-Theoretic Theorems 43/84

Euler’s Totient Function

φ(n) is the totient of n, the number of elements of Z ∗

n :

φ(n) = |Z ∗

n |

Examples:
1 Z ∗

10 = {1, 3, 7, 9} ⇒ φ(10) = 4

Number-Theoretic Theorems 44/84

Euler’s Totient Function

φ(n) is the totient of n, the number of elements of Z ∗

n :

φ(n) = |Z ∗

n |

Examples:
1 Z ∗

10 = {1, 3, 7, 9} ⇒ φ(10) = 4
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}⇒ φ(13) = 12

Number-Theoretic Theorems 44/84

Euler’s Totient Function

φ(n) is the totient of n, the number of elements of Z ∗

n :

φ(n) = |Z ∗

n |

Examples:
1 Z ∗

10 = {1, 3, 7, 9} ⇒ φ(10) = 4
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}⇒ φ(13) = 12

Number-Theoretic Theorems 44/84

Euler’s Totient Function

φ(n) is the totient of n, the number of elements of Z ∗

n :

φ(n) = |Z ∗

n |

Examples:
1 Z ∗

10 = {1, 3, 7, 9} ⇒ φ(10) = 4
2 Z ∗

13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}⇒ φ(13) = 12

In general, if n is prime,
Z ∗

n = {1, 2, . . . , n − 1} ⇒ φ(n) = n− 1.

Number-Theoretic Theorems 44/84

Euler’s Totient Function Values

n φ(n) List of Divisors

1 1 1
2 1 1, 2
3 2 1, 3
4 2 1, 2, 4
5 4 1, 5
6 2 1, 2, 3, 6
7 6 1, 7
8 4 1, 2, 4, 8
9 6 1, 3, 9
10 4 1, 2, 5, 10
11 10 1, 11
12 4 1, 2, 3, 4, 6, 12
13 12 1, 13
14 6 1, 2, 7, 14
15 8 1, 3, 5, 15
16 8 1, 2, 4, 8, 16
17 16 1, 17
18 6 1, 2, 3, 6, 9, 18

n φ(n) List of Divisors

19 18 1, 19
20 8 1, 2, 4, 5, 10, 20
21 12 1, 3, 7, 21
22 10 1, 2, 11, 22
23 22 1, 23
24 8 1, 2, 3, 4, 6, 8, 12, 24
25 20 1, 5, 25
26 12 1, 2, 13, 26
27 18 1, 3, 9, 27
28 12 1, 2, 4, 7, 14, 28
29 28 1, 29
30 8 1, 2, 3, 5, 6, 10, 15, 30
31 30 1, 31
32 16 1, 2, 4, 8, 16, 32
33 20 1, 3, 11, 33
34 16 1, 2, 17, 34
35 24 1, 5, 7, 35
36 12 1, 2, 3, 4, 6, 9, 12, 18, 36

Number-Theoretic Theorems 45/84

Euler’s Totient Function. . .

You can calculate φ(n) as

φ(n) = n(1−
1

p1
) · · · (1−

1

pm

)

where p1, . . . , pm are the the prime factors of n.

Example:
1 φ(35) = 35(1− 1

5)(1− 1
7) = 35 · 4

5 ·
6
7 = 24

Number-Theoretic Theorems 46/84

In-Class Exercise

1 What’s φ(37)?

Number-Theoretic Theorems 47/84

In-Class Exercise

1 What’s φ(37)?

2 What’s φ(38)?

Number-Theoretic Theorems 47/84

Euler’s Theorem

φ(n) is the number of positive integers relatively prime with n.

If p is prime, φ(p) = p − 1.

If n = pq is the product of two primes p and q, then
φ(n) = (p − 1)(q − 1).

Theorem (Euler)

Let x be any positive integer that’s relatively prime to the integer
n > 0, then

xφ(n) mod n = 1

Number-Theoretic Theorems 48/84

Euler’s Theorem. . .

Euler’s theorem holds for each element x of Z ∗

n :

xφ(n) mod n = 1

Examples:
1 7φ(10) mod 10 ≡ 74 mod 10 = 1 since GCD(7, 10) = 1 and

7 ∈ Z ∗

10:
74 mod 10 ≡ 2401 mod 10 = 1

Number-Theoretic Theorems 49/84

Euler’s Theorem. . .

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer
n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Euler’s theorem allows us to reduce the exponent modulo
φ(n):

xy mod n = xy mod φ(n) mod n

Examples:
1 727 mod 13 ≡ 727 mod φ(13) mod 13 ≡ 727 mod 12 mod 13 ≡

73 mod 13 = 5

Number-Theoretic Theorems 50/84

In-Class Exercise: Goodrich & Tamassia R-8.17

1 What’s φ(143)?

Number-Theoretic Theorems 51/84

In-Class Exercise: Goodrich & Tamassia R-8.17

1 What’s φ(143)?

2 What’s 7120 mod 143?

Number-Theoretic Theorems 51/84

In-Class Exercise: Goodrich & Tamassia C-8.8

1 What are the prime factors of 10403?

Number-Theoretic Theorems 52/84

In-Class Exercise: Goodrich & Tamassia C-8.8

1 What are the prime factors of 10403?

2 What’s φ(10403)?

Number-Theoretic Theorems 52/84

In-Class Exercise: Goodrich & Tamassia C-8.8

1 What are the prime factors of 10403?

2 What’s φ(10403)?

3 Use Euler’s theorem to compute 2010203 mod 10403.

Number-Theoretic Theorems 52/84

Euler’s Theorem. . .

Theorem (Corollary to Euler’s theorem)

Given two prime numbers p and q, integers n = pq and
0 < m < n, and an arbitrary integer k, then

mkφ(n)+1 mod n = mk(p−1)(q−1)+1 mod n = m mod n

This relationship will be useful in the proof of correctness of
the RSA algorithm.

Number-Theoretic Theorems 53/84

Fermat’s Little Theorem

Theorem (Fermat’s Little)

Let p be a prime number and g any positive integer g < p, then

gp−1 mod p = 1

Euler’s theorem is a generalization of Fermat’s little theorem.

Examples:
1 1013−1 mod 13 = 1012 mod 13 = 1

Number-Theoretic Theorems 54/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Number-Theoretic Algorithms 55/84

Euler’s GCD Algorithm

GCD(a, b) is the largest number d that divides a and b evenly.

Number-Theoretic Algorithms 56/84

Euler’s GCD Algorithm

GCD(a, b) is the largest number d that divides a and b evenly.

Euler’s algorithm GCD(a, b) returns a triple (d , i , j).

Number-Theoretic Algorithms 56/84

Euler’s GCD Algorithm

GCD(a, b) is the largest number d that divides a and b evenly.

Euler’s algorithm GCD(a, b) returns a triple (d , i , j).

Based on the observation that if x divided a and b, it also
divides a − b. We need to find the largest such x .

Number-Theoretic Algorithms 56/84

Euler’s GCD Algorithm

GCD(a, b) is the largest number d that divides a and b evenly.

Euler’s algorithm GCD(a, b) returns a triple (d , i , j).

Based on the observation that if x divided a and b, it also
divides a − b. We need to find the largest such x .

Key observation: If

d = GCD(a, b) and b > 0

then
d = GCD(b, a mod b)

Number-Theoretic Algorithms 56/84

Euler’s GCD Algorithm. . .

✞ ☎

f u n c t i o n gcd (i n t a , i n t b) : (int , int , i n t) =
i f b = 0 then

return (a, 1, 0)
q ← ⌊a/b⌋
(d , k, l)← gcd(b, a mod b)
return (d , l , k − lq)

✝ ✆

Number-Theoretic Algorithms 57/84

Euler’s GCD Algorithm. . .

Example:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)

Number-Theoretic Algorithms 58/84

Euler’s GCD Algorithm. . .

Example:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)

= GCD(150, 198 mod 150) = GCD(150, 48)

Number-Theoretic Algorithms 58/84

Euler’s GCD Algorithm. . .

Example:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)

= GCD(150, 198 mod 150) = GCD(150, 48)

= GCD(48, 150 mod 48) = GCD(48, 6)

Number-Theoretic Algorithms 58/84

Euler’s GCD Algorithm. . .

Example:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)

= GCD(150, 198 mod 150) = GCD(150, 48)

= GCD(48, 150 mod 48) = GCD(48, 6)

= GCD(6, 48 mod 6) = GCD(6, 0)

Number-Theoretic Algorithms 58/84

Euler’s GCD Algorithm. . .

Example:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)

= GCD(150, 198 mod 150) = GCD(150, 48)

= GCD(48, 150 mod 48) = GCD(48, 6)

= GCD(6, 48 mod 6) = GCD(6, 0)

= 6

Number-Theoretic Algorithms 58/84

Euler’s GCD Algorithm. . .

Compute GCD by hand:
1 divide the larger one by the smaller;
2 write an equation of the form

larger = smaller× quotient + remainder;

3 repeat using the two numbers smaller and remainder;
4 when you get a 0 remainder, the previous line will be the gcd

of the original two numbers.

Number-Theoretic Algorithms 59/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

88 = 23× 3 + 19

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

88 = 23× 3 + 19

23 = 19× 1 + 4

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

88 = 23× 3 + 19

23 = 19× 1 + 4

19 = 4× 4 + 3

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

88 = 23× 3 + 19

23 = 19× 1 + 4

19 = 4× 4 + 3

4 = 3× 1 + 1

Number-Theoretic Algorithms 60/84

Euler’s GCD Algorithm. . .

Find GCD(421, 111).

421 = 111× 3 + 88

111 = 88× 1 + 23

88 = 23× 3 + 19

23 = 19× 1 + 4

19 = 4× 4 + 3

4 = 3× 1 + 1

3 = 1× 3 + 0

The last non-zero remainder is 1 ⇒ GCD(421, 111) = 1.

Number-Theoretic Algorithms 60/84

In-Class Exercise

Compute GCD(196, 42). Show your work.

Number-Theoretic Algorithms 61/84

Bezout’s identity

Theorem (Bezout’s identity)

Given any integers a and b, not both zero, there exist integers i
and j such that GCD(a, b) = ia + jb.

Example:

GCD(819, 462) = (−9)× 819 + 16× 462 = 21.

We use the Extended GCD Algorithm to compute i and j .

Number-Theoretic Algorithms 62/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357
1 : 462 = 357× 1 + 105

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357
1 : 462 = 357× 1 + 105
2 : 357 = 105× 3 + 42

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357
1 : 462 = 357× 1 + 105
2 : 357 = 105× 3 + 42
3 : 105 = 42× 2 + 21

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357
1 : 462 = 357× 1 + 105
2 : 357 = 105× 3 + 42
3 : 105 = 42× 2 + 21
4 : 42 = 21× 2 + 0

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm

Start by finding GCD(819, 462) = 21:

0 : 819 = 462× 1 + 357
1 : 462 = 357× 1 + 105
2 : 357 = 105× 3 + 42
3 : 105 = 42× 2 + 21
4 : 42 = 21× 2 + 0

Now work backwards, substituting one equation into the
previous one.

Number-Theoretic Algorithms 63/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42
2a : 357 + (−3)× 105 = 42

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42
2a : 357 + (−3)× 105 = 42
2b[2a × (−2)] (−2)× 357 + (−2)(−3) × 105 = (−2)× 42

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42
2a : 357 + (−3)× 105 = 42
2b[2a × (−2)] (−2)× 357 + (−2)(−3) × 105 = (−2)× 42
2c[2b in 3a] : (−2)× 357 + (−2)(−3) × 105 = 21− 1× 105

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42
2a : 357 + (−3)× 105 = 42
2b[2a × (−2)] (−2)× 357 + (−2)(−3) × 105 = (−2)× 42
2c[2b in 3a] : (−2)× 357 + (−2)(−3) × 105 = 21− 1× 105
2d [simplify 2c] : (−2)× 357 + 7× 105 = 21

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 3:

3 : 105 = 42× 2 + 21
3a : 1× 105 + (−2)× 42 = 21

Step 2:

2 : 357 = 105 × 3 + 42
2a : 357 + (−3)× 105 = 42
2b[2a × (−2)] (−2)× 357 + (−2)(−3) × 105 = (−2)× 42
2c[2b in 3a] : (−2)× 357 + (−2)(−3) × 105 = 21− 1× 105
2d [simplify 2c] : (−2)× 357 + 7× 105 = 21

Number-Theoretic Algorithms 64/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Step 0:

0 : 819 =462 × 1 + 357

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Step 0:

0 : 819 =462 × 1 + 357
0a : 819 + (−1) × 462 =357

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Step 0:

0 : 819 =462 × 1 + 357
0a : 819 + (−1) × 462 =357
0b[0a × (−9)] : (−9)× 819 + (−9)(−1) × 462 =(−9)× 357

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Step 0:

0 : 819 =462 × 1 + 357
0a : 819 + (−1) × 462 =357
0b[0a × (−9)] : (−9)× 819 + (−9)(−1) × 462 =(−9)× 357
0c[0b in 1d] : (−9)× 819 + (−9)(−1) × 462 + 7× 462=21

Number-Theoretic Algorithms 65/84

Bezout’s identity: Extended GCD Algorithm. . .

Step 1:

1 : 462 =357 × 1 + 105
1a : 462 + (−1) × 357 =105
1b[1a × 7] : 7× 462 + 7(−1) × 357 =7× 105
1c[1b in 2d] : (−2)× 357 + 7× 462 + (7)(−1) × 357 =21
1d [simplify 1c] : (−9)× 357 + 7× 462 =21

Step 0:

0 : 819 =462 × 1 + 357
0a : 819 + (−1) × 462 =357
0b[0a × (−9)] : (−9)× 819 + (−9)(−1) × 462 =(−9)× 357
0c[0b in 1d] : (−9)× 819 + (−9)(−1) × 462 + 7× 462=21
0d [simplify 0c] : (−9)× 819 + 16 × 462 =21

Number-Theoretic Algorithms 65/84

In-Class Exercise

Compute i and j such that at

GCD(196, 42) = i × 196 + j × 42.

Show your work.

Number-Theoretic Algorithms 66/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Number-Theoretic Algorithms 67/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Given x < n, we want to compute y = x−1 mod n, i.e.

yx mod n = 1

Number-Theoretic Algorithms 67/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Given x < n, we want to compute y = x−1 mod n, i.e.

yx mod n = 1

The inverse of x in Zn exists when GCD(n, x) = 1.

Number-Theoretic Algorithms 67/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Given x < n, we want to compute y = x−1 mod n, i.e.

yx mod n = 1

The inverse of x in Zn exists when GCD(n, x) = 1.

Cal GCD(n, x) which returns

(1, i , j)

such that
1 = ix + jn

Number-Theoretic Algorithms 67/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Given x < n, we want to compute y = x−1 mod n, i.e.

yx mod n = 1

The inverse of x in Zn exists when GCD(n, x) = 1.

Cal GCD(n, x) which returns

(1, i , j)

such that
1 = ix + jn

Then
(ix + jn) mod n = ix mod n = 1

and i is x ’s multiplicative inverse in Zn.

Number-Theoretic Algorithms 67/84

Computing Modular Multiplicative Inverses

We can use the GCD routine to compute modular
multiplicative inverses.

Given x < n, we want to compute y = x−1 mod n, i.e.

yx mod n = 1

The inverse of x in Zn exists when GCD(n, x) = 1.

Cal GCD(n, x) which returns

(1, i , j)

such that
1 = ix + jn

Then
(ix + jn) mod n = ix mod n = 1

and i is x ’s multiplicative inverse in Zn.

If GCD(n, x) 6= 1 then we know that the inverse doesn’t exist.

Number-Theoretic Algorithms 67/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

g2 = g · g

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

g2 = g · g

g4 = g2 · g2

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

g2 = g · g

g4 = g2 · g2

g8 = g4 · g4

We can then use these powers to compute gn:

g25 = g16+8+1 = g16 · g8 · g1

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

g2 = g · g

g4 = g2 · g2

g8 = g4 · g4

We can then use these powers to compute gn:

g25 = g16+8+1 = g16 · g8 · g1

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring

Modular exponentiation is an important operation in
cryptography.

gn mod p =

n
︷ ︸︸ ︷

g ∗ g ∗ · · · ∗ g modp

Simply iteratively multiplying the g :s together is too slow.
Instead, we compute

g

g2 = g · g

g4 = g2 · g2

g8 = g4 · g4

We can then use these powers to compute gn:

g25 = g16+8+1 = g16 · g8 · g1

g46 = g32+8+4+2 = g32 · g8 · g4 · g2

Number-Theoretic Algorithms 68/84

Modular Exponentiation by Repeated Squaring. . .

Compute gn mod p:
✞ ☎

f u n c t i o n modexp (i n t g , i n t n , i n t p)
i n t q ← 1
i n t m← n
i n t square← g
whi le m ≥ 1 do

i f odd(m) then
g ← q · square mod p

square← square · square mod p
m ← ⌊m/2⌋

✝ ✆

Number-Theoretic Algorithms 69/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

To generate a prime number q between n/2 and n:

We need to repeat approximately a logarithmic number of
times to find a prime.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

To generate a prime number q between n/2 and n:
1 Let q ← a random number between n/2 and n;

We need to repeat approximately a logarithmic number of
times to find a prime.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

To generate a prime number q between n/2 and n:
1 Let q ← a random number between n/2 and n;
2 q is prime with a probability of at least 1/ ln(n);

We need to repeat approximately a logarithmic number of
times to find a prime.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

To generate a prime number q between n/2 and n:
1 Let q ← a random number between n/2 and n;
2 q is prime with a probability of at least 1/ ln(n);
3 If isPrime(q) then return q;

We need to repeat approximately a logarithmic number of
times to find a prime.

Number-Theoretic Algorithms 70/84

Primality Testing

We are given an integer n and want to test if it’s prime or not.

There exists efficient methods for primality testing.

The number of primes between 1 and n is at least n/ ln(n), for
n ≥ 4.

To generate a prime number q between n/2 and n:
1 Let q ← a random number between n/2 and n;
2 q is prime with a probability of at least 1/ ln(n);
3 If isPrime(q) then return q;
4 Repeat from 1.

We need to repeat approximately a logarithmic number of
times to find a prime.

Number-Theoretic Algorithms 70/84

In-Class Exercise: Goodrich & Tamassia R-8.16

Roughly how many times would you have to call a primality
tester to find a prime number between 1,000,000 and
2,000,000?

Number-Theoretic Algorithms 71/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Discrete Logarithms 72/84

Euler’s Theorem

Theorem (Euler)

Let x be any positive integer that’s relatively prime to the integer
n > 0, then

xφ(n) mod n = 1

Now consider (where a and n are relatively prime)

am mod n = 1.

We know, by Euler’s theorem, that there’s at least one
number m that satisfies this equation: φ(n)!

The smallest positive m for which the equation holds is called

the order of a mod n
the length of the period generated by a.

Discrete Logarithms 73/84

The Order of a mod n

Consider the powers of 7, mod 19:

71 = 7 mod 19

72 = 11 mod 19

73 = 1 mod 19

74 = 7 mod 19

75 = 11 mod 19

76 = 1 mod 19

The sequence repeats.

Discrete Logarithms 74/84

Powers of Integers, Modulo 19

All the powers pf a, modulo 19.

The length of the sequence is highlighted.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
3 9 8 5 15 7 2 6 18 16 10 11 14 4 12 17 13 1
4 16 7 9 17 11 6 5 1 4 16 7 9 17 11 6 5 1
5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1
6 17 7 4 5 11 9 16 1 6 17 7 4 5 11 9 16 1
7 11 1 7 11 1 7 11 1 7 11 1 7 11 1 7 11 1
8 7 18 11 12 1 8 7 18 11 12 1 8 7 18 11 12 1
9 5 7 6 16 11 4 17 1 9 5 7 6 16 11 4 17 1
10 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1
11 7 1 11 7 1 11 7 1 11 7 1 11 7 1 11 7 1
12 11 18 7 8 1 12 11 18 7 8 1 12 11 18 7 8 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
14 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1
15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1
16 9 11 5 4 7 17 6 1 16 9 11 5 4 7 17 6 1
17 4 11 16 6 7 5 9 1 17 4 11 16 6 7 5 9 1
18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1

Discrete Logarithms 75/84

Primitive Roots

All sequences end with 1.

Discrete Logarithms 76/84

Primitive Roots

All sequences end with 1.

Some sequences have length 18. Then we say

Discrete Logarithms 76/84

Primitive Roots

All sequences end with 1.

Some sequences have length 18. Then we say

a generates the set of nonzero integers, modulo 19.

Discrete Logarithms 76/84

Primitive Roots

All sequences end with 1.

Some sequences have length 18. Then we say

a generates the set of nonzero integers, modulo 19.
a is a primitive root of the modulus 19.

Discrete Logarithms 76/84

Primitive Roots

All sequences end with 1.

Some sequences have length 18. Then we say

a generates the set of nonzero integers, modulo 19.
a is a primitive root of the modulus 19.

If a is a primitive root of n then all its powers

a, a2, . . . , aφ(n)

are distinct.

Discrete Logarithms 76/84

Primitive Roots

All sequences end with 1.

Some sequences have length 18. Then we say

a generates the set of nonzero integers, modulo 19.
a is a primitive root of the modulus 19.

If a is a primitive root of n then all its powers

a, a2, . . . , aφ(n)

are distinct.

If a is a primitive root of p, and p is prime, then

a, a2, . . . , ap

are distinct mod p.

Discrete Logarithms 76/84

Primitive Roots. . .

The only integers with primitive roots are of the form (p
prime, α > 0)

2, 4, pα, 2pα

Discrete Logarithms 77/84

Primitive Roots. . .

The only integers with primitive roots are of the form (p
prime, α > 0)

2, 4, pα, 2pα

For 19 (a prime), the primitive roots are 2, 3, 10, 13, 14, 15.

Discrete Logarithms 77/84

Primitive Roots. . .

The only integers with primitive roots are of the form (p
prime, α > 0)

2, 4, pα, 2pα

For 19 (a prime), the primitive roots are 2, 3, 10, 13, 14, 15.

g is a primitive root modulo p if, for each integer i in Zp,
there exists an integer k such that

i = gk mod p.

Discrete Logarithms 77/84

Primitive Roots. . .

For example, looking at the table above, we see that 2 is a
primitive root modulo 19:

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

because for each integer i ∈ Z19 = {1, 2, 3, . . . , 18} there’s an
integer k, such that i = 2k mod 19.

Discrete Logarithms 78/84

Primitive Roots. . .

For example, looking at the table above, we see that 2 is a
primitive root modulo 19:

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1

because for each integer i ∈ Z19 = {1, 2, 3, . . . , 18} there’s an
integer k, such that i = 2k mod 19.

There are φ(p − 1) generators for Zp.

Discrete Logarithms 78/84

In-Class Exercise

1 Compute the table of powers of a, modulo 5, for all positive
integers a < 5.

2 What are the primitive roots of 5?

Discrete Logarithms 79/84

In-Class Exercise

1 Compute the table of powers of a, modulo 7, for all positive
integers a < 7.

2 What are the primitive roots of 7?

Discrete Logarithms 80/84

Computing Primitive Roots

Consider the equation

y = gx mod p

If we have g , x , and p it’s easy to calculate y .

Discrete Logarithms 81/84

Computing Primitive Roots

Consider the equation

y = gx mod p

If we have g , x , and p it’s easy to calculate y .

What if, instead, we’re given y , g , and p?

Discrete Logarithms 81/84

Computing Primitive Roots

Consider the equation

y = gx mod p

If we have g , x , and p it’s easy to calculate y .

What if, instead, we’re given y , g , and p?

it’s hard to take the discrete logarithm, i.e. to compute x .

Discrete Logarithms 81/84

Computing Primitive Roots

Consider the equation

y = gx mod p

If we have g , x , and p it’s easy to calculate y .

What if, instead, we’re given y , g , and p?

it’s hard to take the discrete logarithm, i.e. to compute x .

The fastest known algorithm is

O(e((ln p)1/3(ln(ln p))2/3))

which is infeasible for large primes p.

Discrete Logarithms 81/84

Outline

1 Introduction
2 Modes of Operations
3 Attacks on Block Ciphers
4 Modular Arithmetic

Modular Inverses
Modular Exponentiation

5 Number-Theoretic Theorems
Euler’s Totient Function
Euler’s theorem

6 Number-Theoretic Algorithms
Bezout’s identity
Modular Multiplicative Inverses
Modular Exponentiation
Primality Testing

7 Discrete Logarithms
8 Summary

Summary 82/84

Readings and References

Chapter 8.1.7, 8.2.1, 8.5.2 in Introduction to Computer
Security, by Goodrich and Tamassia.

Summary 83/84

Acknowledgments

Additional material and exercises have also been collected from
these sources:

1 Igor Crk and Scott Baker, 620—Fall 2003—Basic
Cryptography.

2 William Stallings, Cryptography and Network Security.

3 Bruce Schneier, Applied Cryptography.

4 Neal R. Wagner, The Laws of Cryptography with Java Code,
http://amadousarr.free.fr/java/javacryptobook.pdf.

5 Euler’s Totient Function Values For n = 1 to 500, with
Divisor Lists, http://primefan.tripod.com/Phi500.html

6 Diffie-Hellman calculator:
http://dkerr.home.mindspring.com/diffie_hellman_calc.html.

Summary 84/84

http://amadousarr.free.fr/java/javacryptobook.pdf
http://primefan.tripod.com/Phi500.html
http://dkerr.home.mindspring.com/diffie_hellman_calc.html

	Introduction
	Modes of Operations
	Attacks on Block Ciphers
	Modular Arithmetic
	Modular Inverses
	Modular Exponentiation

	Number-Theoretic Theorems
	Euler's Totient Function
	Euler's theorem

	Number-Theoretic Algorithms
	Bezout's identity
	Modular Multiplicative Inverses
	Modular Exponentiation
	Primality Testing

	Discrete Logarithms
	Summary

