
CSc 466/566 Computer Security
Assignment 3

Due Noon, Mon April 15, 2013

Worth 10% (ugrads), 5% (grads)

Christian Collberg
Department of Computer Science, University of Arizona

Copyright c© 2013 Christian Collberg

1. Introduction

In this assignment we’ll study buffer overflow attacks and man-at-the-end attacks.

• This is an individual assignment. You cannot collaborate with anyone or get help from any human.

2. Buffer Overflow Attacks

2.1 Setting up the environment

1. Go to

http://www.cis.syr.edu/~wedu/seed/lab_env.html

and download

SEEDUbuntu9_August_2010.tar.gz.

This file contains an image of the virtual machine on which you should work. The homework will be
graded only on this virtual machine.

2. Download VMWare player from

http://www.vmware.com/products/player

and install it on your workstation.

3. Open VMWare player and navigate to

File→Open a Virtual Machine

and open the VM downloaded in step 1.

4. To login to the system, use the following credentials:

Username : seed

Password: dees

Certain steps in the homework will require you to have root access. In such cases, use the following
credentials:

1



Username: root

Password: seedubuntu

In case of any difficulties, start by consulting the user manual for the VM:

http://www.cis.syr.edu/~wedu/seed/Documentation/Ubuntu9_VM/Ubuntu9_VM_Manual.pdf

2.2 Tasks to be performed

Go to /50

http://www.cis.syr.edu/~wedu/seed/Labs/Vulnerability/Buffer_Overflow

and download the instructions for the exercise along with the relevant C files. Follow the instructions, and
hand in two versions of the files stack.c and exploit.c:

1. Create two folders task1 and task2.

2. In each folder, create task〈n〉/stack.c and task〈n〉/exploit.c, corresponding to the two tasks.

3. Create a file report.pdf describing how you solved tasks 1-4.

4. Zip up task1, task2, and report.pdf in a zip-file called buffer.zip and submit this to d2l.

NOTE: Task 2 has some bonus points — these questions are mandatory!

3. Man-At-The-End Attacks

player is a digital rights management program. You call it like this:

> player userkey sample1 sample2 sample3

where userkey is a 32-bit cryptographic key and the samples are integers that you want to “play”. In
actuality, all that happens is that decode samples are written to the file audio. Example:

> player 0xca7ca115 10000 20000 30000 60000

Please enter activation code: 42

> cat audio

3133074688.000000

3133047808.000000

3133062912.000000

3133022208.000000

Figure 1 shows a block diagram of the DRM player. Figure 2 shows (part of) the actual C code.

• You can download the executable from here:

http://www.cs.arizona.edu/~collberg/Teaching/466-566/2012/Assignments/index.html

The executable is compiled to run on lectura.

• Read Appendix A to learn how to use gbd and other related tools.

• Hand in this (hardcopy) document with the boxes filled in with your answers, or submit the corre-
sponding text file.

2



audioplayer key

encrypted
media

tamper−detectlicense−check

decrypt decode

analogue

fingerprintviolation−response

activation
code

user key

Figure 1: Block diagram of the player.

3.1 Find information about the program!

1. Use the file command to find out what kind of executable we’re dealing with. /10

2. Use objdump to find the program’s entrypoint.

3. Use objdump to find the beginning of the text segment.

3



✞ ☎
typedef unsigned int uint32 ;

typedef char* caddr_t ;

typedef uint32 * waddr_t ;

uint32 the_player_key = ...;

FILE* audio;

int activation_code = 42;

uint32 play(uint32 user_key , uint32 encrypted_media[], int media_len ) {

int code;

printf ("Please enter activation code: ");

scanf("%i" ,&code);

if (code!= activation_code) {

fprintf (stderr ,"%s\n","wrong code");

...

}

int i;

for (i=0;i<media_len ;i++) {

uint32 key = user_key ^ the_player_key;

uint32 decrypted = key ^ encrypted_media[i];

if (time (0) > ....) { ... }

float decoded = (float)decrypted ;

fprintf (audio ,"%f\n",decoded ); fflush (audio );

}

}

uint32 player_main (uint32 argc , char *argv []) {

uint32 user_key = atoi(argv [1]);

int i;

uint32 encrypted_media [100];

for (i=2; i<argc; i++)

encrypted_media[i-2] = atoi(argv[i]);

int media_len = argc -2;

play(user_key ,encrypted_media , media_len );

}
✝ ✆

Figure 2: The code.

4. Use objdump to find the beginning of the read-only data segments.

4



5. Use objdump to find out which symbols the executable has defined.

3.2 Breaking on system function

The player fails when its use-by date has been exceeded: /20

> player 0xca7ca115 10000 20000 30000 60000

Program expired!

Bus error

This is what the protection code looks like:
✞ ☎
if (time (0) > ...) {

...

}
✝ ✆

3.2.1 Algorithm — Breaking on system function

We already know that the executable is dynamically linked. This means that many library functions can
be easily found by name. Most likely, the program calls the time() function in the standard library and
compares the result to a predefined value. So, the idea we’re going to use is to

1. set a breakpoint on time,

2. run the program until the breakpoint is hit,

3. go up one level in the call stack (to see who called time),

4. look at the assembly code in the vicinity of the call to time for the equivalent of
✞ ☎
if (time (0) > some value)...
✝ ✆

5



Table 1: X86 condition codes. Taken from http://courses.ece.uiuc.edu/ece390/resources/opcodes.

html.
.

CCCC Name Means

0000 O overflow
0001 NO Not overflow
0010 C/B/NAE Carry, below, not above nor equal
0011 NC/AE/NB Not carry, above or equal, not below
0100 E/Z Equal, zero
0101 NE/NZ Not equal, not zero
0110 BE/NA Below or equal, not above
0111 A/NBE Above, not below nor equal
1000 S Sign (negative)
1001 NS Not sign
1010 P/PE Parity, parity even
1011 NP/PO Not parity, parity odd
1100 L/NGE Less, not greater nor equal
1101 GE/NL Greater or equal, not less
1110 LE/NG Less or equal, not greater
1111 G/NLE Greater, not less nor equal

and replace it with
✞ ☎
if (time (0) <= some value)...
✝ ✆

3.2.2 Crack — Remove the use-by check!

So, let’s go ahead and remove the pesky check that makes the program say Program expired! instead of
playing music for us!

1. Start the player program under gdb:
✞ ☎
> gdb -write -silent player
✝ ✆

2. Set a breakpoint on the system time function.
✞ ☎
(gdb) break time
✝ ✆

3. Start the program by typing the command
✞ ☎
(gdb) run 0xca7ca115 10000 20000 30000 60000
✝ ✆

0xca7ca115 is the secret key. 10000 20000 30000 60000 are the input “samples” to the program.

4. What location is the time library function called from? Use the where command!

Next use the up command to walk up the caller’s stack frame and x/i $pc to find the address of the
current instruction.

6



5. Find the location where the value time returns is tested and the branch that follows the test!

6. The jle instruction is two bytes long (how can you tell?). What’s the value of these two bytes (in
hex)?

7. The second four bits of the jle opcode is the condition code. See Table 1 for a list of the X86 processor’s
condition codes. You now need to invert the branch from a less-than-or-equal to a greater-than! What
should the X86 instruction be, in hex?

8. Now you know the location to patch at and what the new instruction should be! It’s time to do the
actual patch! Start by quitting gdb, and then re-entering gdb.

7



NOTE: gdb is really picky about this — you have to start gdb from a
“clean slate” before you edit the executable or the changes won’t actually
affect the executable file.

Show the gdb instructions you used:
✞ ☎
(gdb) quit

> gdb -write -silent player

do the patch here!

(gdb) quit
✝ ✆

9. Exit gdb. Run player. Does it behave better now?

10. Compare the new player with the original one using vbindiff which can be downloaded from here:

http://www.cjmweb.net/vbindiff/

✞ ☎
> vbindiff player player .orig
✝ ✆

Can you find the difference?

3.3 Searching the binary

The player program fails if you have the wrong activation code: /20
✞ ☎
> player 0xca7ca115 10000 20000 30000 60000

Please enter activation code: 99

wrong code!

Bus error
✝ ✆

(The real activation code is "42".) Obviously, you want the program to play without nagging you about the
activation code!

3.3.1 Algorithm — Cracking by Searching the Binary

To remove the activation code check we’re going to use a slightly different strategy. The latest version (7.0
and later) of gdb has the ability to search for a string within the executable.

We can assume that the protection code looks something like this:
✞ ☎
addr1: "wrong code"

.......

read_value = scanf ()

if (read_value != activation_code)

addr2: call printf (addr1 )
✝ ✆

8



or, in pseudo assembly code:
✞ ☎
addr1: .ascii "wrong code"

.............

mov read_value , reg0

mov activation_code , reg1

cmp reg0 ,reg1

je somewhere

addr2: mov addr1 , reg0

call printf
✝ ✆

So, we

1. search for addr1, the address of the string "wrong code",

2. search for addr2, the address where printf is called,

3. look backwards in the code until we find the instructions that do the check if (activation code !=

42) · · · , and

4. patch the code as in the previous exercise.

NOTE: This will only work if the compiler generates addr1 directly in the
code! Some compilers will instead load addr1 as an offest from a base
register — then we can’t find addr2 as easily as this! On Mac OS X we
can compile with gcc -mdynamic-no-pic to turn off this behavior.

3.3.2 Crack — Remove the activation code check!

Now carry out the attack:

1. Before we can start searching the binary, you need to find out where the text segment and the read
only data segment start, and how long they are:
✞ ☎
> objdump -x player | egrep ’text|Name’ # Linux

> objdump -x player | egrep ’rodata |Name’

> otool -l player | gawk ’/__text /,/ size/{ print}’ # Mac OS X

> otool -l player | gawk ’/__cstring /,/ size/{ print}’
✝ ✆

2. Use gdb’s find command to find the address of the string "wrong code".1

1Be careful to enter the search string exactly; gdb’s find command doesn’t search for partial strings.

9



Let’s call this data address addr1. Check that you have the right address:
✞ ☎
(gdb) x/s addr1 here!

addr1: "wrong code"
✝ ✆

3. Now use the find command again, looking through the text segment for an instruction that uses the
addr1 address!

Let’s call this code address addr2.

4. Disassemble a region prior to addr2 to verify that is the region you’re looking for.

5. Now that you know both addr1 and addr2, it’s time to do the patching! First exit, and then re-enter
gdb.

You now need to replace the je (jump equal) branch with a jmp (jump always). The opcode for jmp
is 0xeb. Show the gdb command here:
✞ ☎
(gdb) quit

> gdb -write -silent player1

do the patch here!

(gdb) quit
✝ ✆

(See http://www.itis.mn.it/linux/quarta/x86/jmp.htm.)

6. Try the patched program! Does it work for any activation code?

A. MATE Techniques

10



A.1 Learning about the executable (Linux)

1. objdump prints out information about an executable file. It has lots of options, depending on what you
want. The -T option prints the dynamic symbols:
✞ ☎
> objdump -T player2

DYNAMIC SYMBOL TABLE:

00000000 DF *UND* 00000039 GLIBC_2 .0 printf

00000000 DF *UND* 0000002 b GLIBC_2 .0 atoi

00000000 DF *UND* 00000024 GLIBC_2 .0 fprintf

00000000 DF *UND* 00000020 GLIBC_2 .0 time
✝ ✆

2. objdump can also disassemble:
✞ ☎
> objdump -d player2 | head

080483 f4 <.init >:

80483 f4: 55 push %ebp

80483 f5: 89 e5 mov %esp ,%ebp

80483 f7: 83 ec 08 sub $0x8 ,%esp
✝ ✆

3. objdump gives you the start address:
✞ ☎
> objdump -f player2 | grep start

start address 0x080484f0
✝ ✆

4. objdump gives you the address and size of the string (read-only date) and text segments:
✞ ☎
> objdump -x player2 | egrep ’rodata |text|Name’

Idx Name Size VMA LMA File off Algn

11 .text 00000508 080484 f0 080484 f0 000004 f0 2**4

13 .rodata 00000075 08048 a14 08048 a14 00000 a14 2**2
✝ ✆

A.2 Learning about the executable (Mac OS X)

On Mac OS X we have to use otool instead of objdump for some operations.

1. To print the dynamic symbols:
✞ ☎
> objdump -T player2
✝ ✆

2. To disassemble:
✞ ☎
> otool -t -v player2
✝ ✆

3. To get the start address:
✞ ☎
> otool -t -v player2 | head
✝ ✆

4. To get the address and size of the string and text segments:
✞ ☎
otool -l player2 | gawk ’/__text /,/ size /{print }’

otool -l player2 | gawk ’/__cstring /,/ size /{print }’
✝ ✆

NOTE: otool sometimes displays addresses like “00000bd0”, and sometimes
like “0000000100000bd0.” Inside gdb use “0x100000bd0” since this is the ac-
tual virtual address. (Avoid leading zeros since this indicates an octal
address.)

11



A.3 Tracing the executable

1. ltrace traces library calls:
✞ ☎
> ltrace -i -e printf player2

[0 x804884e ] printf ("hash=0x%x\n", 0x478a1c90hash=0 x478a1c90 ) = 16

tampered !

[0 x8048702 ] printf ("Please enter activation code: ") = 30

Please enter activation code:
✝ ✆

2. strace traces system calls:
✞ ☎
> strace -i -e write player2

[110425] write (1, "hash=0 x478a1c90 \n", 16hash =0 x478a1c90 ) = 16

[110425] write (2, "tampered !\n", 10 tampered !) = 10

[110425] write (1, "Please enter activation code: " ,... ) = 30
✝ ✆

A.4 Gdb

1. To start gdb:
✞ ☎
gdb -write -silent --args player2 0xca7ca115 1000 2000 3000 4000
✝ ✆

2. The latest version of gdb (7.0 and above) has the new find command which searches for a string in
an executable:
✞ ☎
(gdb) find startaddress , +length , "string "

(gdb) find startaddress , stopaddress , "string "
✝ ✆

NOTE: Note that you have to give the entire string you’re looking for —
find doesn’t do partial searches. I believe it looks for the string including

the null character at the end, so any trailing spaces, tabs, etc. have to be
included in the search.

You can also search for bytes, words, etc.

3. To set a breakpoint at a particular address:
✞ ☎
(gdb) break *0x......

(gdb) hbreak *0x......
✝ ✆

hbreak sets a hardware breakpoint which doesn’t modify the executable itself.

NOTE: Note that on x86-64, the program must be started before you can
set a hardware breakpoint!

4. To set a watchpoint at a particular address:
✞ ☎
(gdb) rwatch *0x......

(gdb) awatch *0x......
✝ ✆

rwatch only checks for reads of the location.

NOTE: Note that on x86-64, the program must be started before you can
set a hardware watchpoint!

5. To disassemble instructions:

12



✞ ☎
(gdb) disass startaddress endaddress
✝ ✆

or, if you only want to see a certain number (here, 3) of instructions:
✞ ☎
(gdb) x/3i address

(gdb) x/i $pc
✝ ✆

The second command prints the instruction at the current address,

6. To examine a data word (x=hex,s=string, d=decimal, b=byte,. . . ):
✞ ☎
(gdb) x/x address

(gdb) x/s address

(gdb) x/d address

(gdb) x/b address
✝ ✆

You can hit return multiple times to examine consequtive locations.

7. To print register values:
✞ ☎
(gdb) info registers
✝ ✆

8. To examine the callstack:
✞ ☎
(gdb) where

(gdb) bt -- same as where

(gdb) up -- previous frame

(gdb) down -- next frame
✝ ✆

9. To step one instruction at a time:
✞ ☎
(gdb) display /i $pc

(gdb) stepi

(gdb) si -- same as stepi

(gdb) nexti -- like step , but don ’t step into functions

(gdb) ni -- same as nexti
✝ ✆

The display command only has to be set once. It makes sure that gdb prints the instruction it’s
stepping over.

10. To modify a value in memory:
✞ ☎
(gdb) set {unsigned char}address = value

(gdb) set {int}address = value
✝ ✆

A.5 Patching executables with gdb

Cracking an executable proceedes in these steps:

1. find the right address in the executable,

2. find what the new instruction should be,

3. modify the instruction in memory,

4. save the changes to the executable file.

This process is called patching.
gdb can patch the executable for us, but it is very picky about how to go about it. There are two ways

to start the program to allow patching:

13



method 1:
✞ ☎
> gdb -write -q player1
✝ ✆

method 2:
✞ ☎
> gdb -q player1

(gdb) set write

(gdb) exec -file player1 # reload the file!
✝ ✆

gdb doesn’t allow us to patch the executable when it is running. It’s therefore best to:

1. Run the program under gdb and find the address of the instruction you want to patch.

2. Exit gdb.

3. Start gdb again using one of the two methods above.

4. Make the patch and exit:
✞ ☎
(gdb) set {unsigned char} 0x804856f = 0x7f

(gdb) quit
✝ ✆

14


