CScd66/566 Computer Security
Midterm Exam Cheat-Sheet

Christian Collberg

Mon Mar 19, 2012

A Cheat-Sheet

A.1 Modular Arithmetic

(a +b) mod n = ((a mod n) 4+ (b mod n)) mod n
(a —b) mod n = ((a mod n) — (b mod n)) mod n

(a*b) mod n = ((a mod n) * (b mod n)) mod n
y
e e
Y modn =2z *---*xxmodn

A.2 Exponents/Powers

:L'aﬂj‘b _ x(a+b)
vy = (xy)*
(a:a)b _ x(ab)

(a—b) _ T
:1:‘ _ —_—
xb

1
o 1

X = e

A.3 Logarithms

y = logy (x) iffx = bY
log; (1) =0
log;, (b) =1
log;, (zy) = log;, () + logy ()

g (£) = oy () ~ 1oz, 1)

logy, (") = nlogy (2)
_ log, ()
log,. (b)

log;, (7) = log, (¢) log,. (x)

A.4 Basic Theorems

THEOREM 1 (EULER) Let x be any positive in-
teger that’s relatively prime to the integer n > 0,
then z®™ mod n = 1.

THEOREM 2 (COROLLARY TO EULER’S THEOREM)

Let x© be any positive integer that’s relatively
prime to the integer n > 0, and let k be any posi-
tive integer, then z* mod n = zF ™04 ¢(") mod n.

THEOREM 3 (BEZOUT’S IDENTITY) Given any
integers a and b, not both zero, there exist in-
tegers i and j such that GCD(a,b) = ia + jb.

THEOREM 4 (COROLLARY TO EULER’S THEOREM)

Given two prime numbers p and g, integers
n = pg and 0 < m < n, and an arbi-
trary integer k, then mFPMtlmodn =
mFP=1D@=D+1 16d n = m mod n.

THEOREM 5 (FERMAT’S LITTLE THEOREM)
Let p be a prime number and g any positive
integer g < p, then g~ mod p = 1.

A.5 GCD

func ged(int a,int b):(int,int,int) =
if b=0 then
return (a,1,0)
q — |a/b]
(d,k,1) «— gcd(b,a mod b)
return (d,l,k —lq)

e Use GCD to compute modular multiplica-
tive inverses. Given x < n, we want to
compute y = z~! mod n, i.e. yrmodn =



1. The inverse of x in Z, exists when A.8 Elgamal Encryption
GCD(n,z) = 1.

e Calculate GCD(n,z) = (1,4,j) such that * Bob (Key generation):

1 = iz + jn. Then (ixz + jn) modn = 1. Pick a prime p.
iz mod n = 1 and ¢ is «’s multiplicative in- 2. Find a generator g for Z,.
verse in Z,. 3. Pick a random number = between 1
and p — 2.
A.6 RSA 4. Compute y = ¢* mod p.

— P = (p,g,y) is Bob’s RSA public key.

Bob (K tion):
* Bob (Key generation) — Sp = x is Bob’ RSA private key.

1. Generate two large random primes p

and ¢. e Alice (encrypt and send a message M to
2. Compute n = pq. Bob):
3. Select a small odd integer e relatively 1. Get Bob’s public key Pg = (p, g,y).
prime with ¢(n). 2. Pick a random number k between 1
4. Compute ¢(n) = (p —1)(qg — 1). and p — 2.
5. Compute d = e~! mod ¢(n). 3. Compute the ciphertext C = (a,b):
— Pg = (e,n) is Bob’s RSA public key. a = ¢*" mod p

— Sp = (d,n) is Bob’ RSA private key. b= My* mod p

Alg t and d Mt
) Boz}ji (encrypt and send a message ® e Bob (decrypt a message C' = (a, b) received

from Alice):

1. Get Bob’s public key Pp = (e, n). 1. Compute M = b(a®)~! mod p.

2. Compute C' = M® mod n.
e Bob (decrypt a message C received from Al- A g RSA Signature Scheme
ice):

1. Compute M = O mod n. e Bob (Key generation): As before.

— Pp = (e,n) is Bob’s RSA public key.
— Sp = (d,n) is Bob’ RSA private key.
e Bob (sign a secret message M ):

. ‘ 1. Compute S = M9 mod n.
(a) Pick p, a prime number. 2. Send M, S to Alice.
(b) Pick g, a generator for Z,.

A.7 Diffie-Hellman Key Exchange

1. All parties (set-up):

o Alice (verify signature S received from

2. Alice: Bob):
(a) Pick a random = € Z,,z > 0. 1. Receive M, S from Alice.
(b) Compute X = g* mod p. 2. Verify that M £ S¢ mod n.
(¢) Send X to Bob.
3. Bob: A.10 Elgamal Signature Scheme

(a) Pick a random y € Z,,x > 0.

e Alice (Key generation): As before.
(b) Compute Y = g¥ mod p.

. 1. Pick a prime p.
(c) Send ¥ to Alice 2. Find a generator g for Z,.
4. Alice computes the secret: K; = Y* mod p. 3. Pick a random number x between 1
5. Bob computes the secret: Ky = XY mod p. and p — 2.



4. Compute y = ¢* mod p.

— P4 = (p,g9,y) is Alice’s RSA public
key.
— Sy =z is Alice’ RSA private key.
o Alice (sign message M and send to Bob):

1. Pick a random number k.
2. Compute the signature S = (a,b):

a = gk mod p
b=k"Y(M — za) mod (p — 1)

e Bob (verify the signature S = (a, b) received
from Alice):

1. Verify y® - a® mod p Z g™ mod p.



