Program Analysis

@ Attackers: need to analyze our program to modify it!
@ Defenders: need to analyze our program to protect it!

@ Two kinds of analyses:

@ static analysis tools collect information about a program by
studying its code;

@ dynamic analysis tools collect information from executing the
program.

1/19

Static and Dynamic Analyses

@ control-flow graphs: representation of functions.

2/19

Static and Dynamic Analyses

@ control-flow graphs: representation of functions.

o call graphs: representation of (possible) function calls.

2/19

Static and Dynamic Analyses

@ control-flow graphs: representation of functions.
o call graphs: representation of (possible) function calls.

o debugging: what path does the program take?

2/19

Static and Dynamic Analyses

control-flow graphs: representation of functions.

0
o call graphs: representation of (possible) function calls.
o debugging: what path does the program take?

°

tracing: which functions/system calls get executed?

2/19

Static and Dynamic Analyses

e © ¢ ¢ ¢

control-flow graphs: representation of functions.

call graphs: representation of (possible) function calls.
debugging: what path does the program take?
tracing: which functions/system calls get executed?

profiling: what gets executed the most?

2/19

Static and Dynamic Analyses

e © ¢ ¢ ¢ ¢

control-flow graphs: representation of functions.

call graphs: representation of (possible) function calls.
debugging: what path does the program take?
tracing: which functions/system calls get executed?
profiling: what gets executed the most?

disassembly: turn raw executables into assembly code.

2/19

Static and Dynamic Analyses

e © ¢ ¢ ¢ ¢ ¢

control-flow graphs: representation of functions.

call graphs: representation of (possible) function calls.
debugging: what path does the program take?
tracing: which functions/system calls get executed?
profiling: what gets executed the most?

disassembly: turn raw executables into assembly code.

decompilation: turn raw assembly code into source code.

2/19

Outline

@ Static Analysis
@ Control-flow analysis

Static Analysis 3/19

Control-flow Graphs (CFGs)

[

A way to represent functions.

(]

Nodes are called basic blocks.

(]

Each block consists of straight-line code ending (possibly) in a
branch. j

An edge A — B: control could flow from A to B.

Static Analysis 4/19

int modexp(int y,int x[],
int w,int n) {

int R, L;
int k = 0;
int s = 1,;

while (k < w) {
if (x[k] ==1)
R = (s*xy) % n;

else
R =s
s = R«xR % n
L =R;
k++;
}
return L;

—~ A~~~

e o U e N

N, OWOWOWLW~NOOE A WNH

— N e e e e e e N S

=0
=1

f (k>=w) goto (12)

f (x[k]!=1) goto (7)
R=(sx*y)%n

goto (8)

R=s

s=R*R%n

L=R

k++

goto (3)

return L

k
s
i
i

Static Analysis

5/19

The resulting graph

k=0
s=1

vy

Bl:‘ (3) if (k>=w)goto Bs

v

(4) if (x[k]l!'=1) goto B, ‘

Bo:| (1)
(2)

Bs : ‘BQ:

(12) return L

B3 :| (5) Re(s*y) nod n
(6) goto Bs

N

Bs : (8) s=R*R nod n
(9 L =R

(10) k++

(11) goto B

|

Static Analysis 6/19

BUILDCFG(F):

@ Mark every instruction which can start a basic block as a
leader:

o the first instruction is a leader;

o any target of a branch is a leader;

o the instruction following a conditional branch is a
leader.

@ A basic block consists of the instructions from a leader up
to, but not including, the next leader.

© Add an edge A — B if A ends with a branch to B or can fall
through to B. O

Static Analysis 7/19

Interprocedural control flow

® Interprocedural analysis also considers flow of information
between functions.

o Call graphs are a way to represent possible function calls.

@ Each node represents a function.

@ An edge A — B: A might call B.

Static Analysis 8/19

Building call-graphs

void h();

void f(){
h();
}

void g(){
f();
}

void h() {
f();
g();

}

void k() {}

int main() {

h();

Static Analysis

Y I Y A YA N T P

9/19

Outline

© Reconstituting source
@ Disassembly

Reconstituting source 10/19

Reconstituting source

ccC

Reconstituting source

as

p.o p
header d header
.data .data
. text . text
synbol s synbol s

rel ocation rel ocation

% t rans

strip

p’
header
.data
.text

11/19

Attacking stripped binary code

p’ hex p

header edi tor header

.data .data

. text .text

@di s

p'.s p.c . p
dcc edit

ccC

Reconstituting source

12/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.

Reconstituting source 13/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.

@ Mixing data and code — misclassify data as instructions.

Reconstituting source 13/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.
@ Mixing data and code — misclassify data as instructions.

@ Indirect jumps — must assume that any location could be
the start of an instruction!

13/19

Reconstituting source

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.
@ Mixing data and code — misclassify data as instructions.

@ Indirect jumps — must assume that any location could be
the start of an instruction!

@ Find the beginning of functions if all calls are indirect.

13/19

Reconstituting source

Why is disassembly hard?

Variable length instruction sets — overlapping instructions.

Mixing data and code — misclassify data as instructions.

Indirect jumps — must assume that any location could be
the start of an instruction!

Find the beginning of functions if all calls are indirect.

Finding the end of fuctions — if no dedicated return
instruction.

Reconstituting source 13/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.

@ Mixing data and code — misclassify data as instructions.

@ Indirect jumps — must assume that any location could be
the start of an instruction!

@ Find the beginning of functions if all calls are indirect.

@ Finding the end of fuctions — if no dedicated return
Instruction.

@ Handwritten assembly code — won't conform to the standard
calling conventions.

Reconstituting source 13/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.
@ Mixing data and code — misclassify data as instructions.

@ Indirect jumps — must assume that any location could be
the start of an instruction!

@ Find the beginning of functions if all calls are indirect.

@ Finding the end of fuctions — if no dedicated return
instruction.

@ Handwritten assembly code — won't conform to the standard
calling conventions.

@ code compression — the code of two functions may overlap.

Reconstituting source 13/19

Why is disassembly hard?

@ Variable length instruction sets — overlapping instructions.
@ Mixing data and code — misclassify data as instructions.

@ Indirect jumps — must assume that any location could be
the start of an instruction!

@ Find the beginning of functions if all calls are indirect.

@ Finding the end of fuctions — if no dedicated return
instruction.

@ Handwritten assembly code — won't conform to the standard
calling conventions.

@ code compression — the code of two functions may overlap.

@ Self-modifying code.

Reconstituting source 13/19

Instruction set 1

‘ opcode ‘ mnemonic ‘ operands ‘ semantics ‘

0 call addr function call to addr

1 calli reg function call to address in reg

2 brg offset branch to pc+ offset if flags for
> are set

3 inc reg reg < reg +1

4 bra offset branch to pc + offset

5 jmpi reg jump to address in reg

6 prologue beginning of function

7 ret return from function

@ Instruction set for a small architecture.
@ All operators and operands are one byte long.
@ Instructions can be 1-3 bytes long.

Reconstituting source 14/19

Instruction set 2

‘ opcode ‘ mnemonic ‘ operands ‘ semantics ‘

8 load regq, (reg,) | regq < [regs]

9 loadi reg,imm reg < imm

10 cmpi reg,imm compare reg and imm and set
flags

11 add regy, rego reg, < reg, + reg,

12 brge offset branch to pc+ offset if flags for
> are set

13 breq offset branch to pc+ offset if flags for
= are set

14 store (regq), reg, | [regq] < reg,

Reconstituting source 15/19

Disassembly — example

6 010904310706901100122609
130111082152323791347914
4276903769017 422 43174
341

@ Next few slides show the results of different disassembly
algorithms.

@ Correctly disassembled regions are in pink.

Reconstituting source 16/19

:[6]

: [0,10]
: [9,0,43]
: [1,0]
(7]

: [0]
foo:

10:[6]
11:[9,0 1]
14:[10,0,1
17:[2,26]

©wo wHOoO3

19:[9,1,30]
22:[11,1,0]

25:[8,2,1]
28:[5,2]
30:[32]
31:[37]
32:[9.1,3]
35:[4,7]
37:[9,1,4]
40:[4,2]
42:[7]

prologue
call
loadi
calli
ret
.align

prologue
loadi
cmpi
brg
loadi
add
load
jmpi
.byte
.byte
loadi
bra
loadi
bra
ret

r2,(

ain: # ORIGINAL PROGRAM

foo
r0,43
r0

2

r0,1
r0,1
26
rl,30
rl,r0
rl)
r2

32

37
rl,3

rl .4

bar:
43:[6]
44:[9,0,3]
47:[7]
baz:
48:[6]
49:19,0,1]
52:[7]
life:
53:[42]
fred:
54:[2,4]
56:[3,1]
58:[7]
59:[4,3]
61:[4,1]

prologue
loadi
ret

prologue
loadi
ret

.byte

brg
inc
ret
bra
bra

r0,3

r0,1

LINEAR SWEEP DISASSEMBLY
0: [6] prologue

1: [0,10] call 10

3: [9.,0,43] loadi r0,43
6: [1,0] calli r0

8: [7] ret

9: [0,6] call 6
11:[9,0,1] loadi (0,1
14:[10,0,1] cmpi r0,1
17:[2,26] brg 26
19:[9,1,30] loadi (1,30
22:[11,1,0] add (1,10
25:[8,2,1] load r2,(rl)
28:[5,2] jmpi r2
30:[32] ILLEGAL 32
31:[37] ILLEGAL 37
32:[9,1,3] loadi (1,3
35:[4,7] bra 7
37:[9,1,4] loadi (1,4
40:[4,2] bra 2

42:[7] ret

43:[6]
44:[9,0,3]
47:[7]
48:[6]
49:[9,0,1]
52:[7]
53:[42]
54:[2,4]
56:[3,1]
58:[7]
59:[4 3]
61:[4,1]

prologue
loadi

ret
prologue
loadi

ret
ILLEGAL
brg

inc

ret

bra

bra

r0,3

r0,1
42

rl

fO0: # RECURSIVE TRAVERSAL

0: [6]

1: [0,10]
3: [9,0,43]
6: [1,0]
8: [7]

9: [0]

f10:

10:[6]
11:[9,0,1]
14:[10,0,1]
17:[2,26]
19:[9,1,30]
22:[11,1,0]
25:(8,2,1]
28:[5,2]
30:[32]
31:[37]

prologue

call 10
loadi r0,43
calli r0
ret

.byte 0
prologue

loadi r0,1
cmpi rO0,1
brg 26
loadi rl,30
add rl,r0
load r2,(rl)
jmpi r2
.byte 32
.byte 37

32:[9,1,3]
35:[4,7]
37:[9,1,4]
40:[4,2]
42:[7]
43:[6]
44:[9,0,3]
47:[7]

48:[6]
49:9]
50:[0]
51:[1]
52:[7]
53:[42]
54:[2]

59:[4]
60:[3]
61:[4
62:[1

loadi

bra

loadi

bra

ret

prologue

loadi
ret

.byte
.byte
.byte
.byte
.byte
.byte
.byte

rl 3

rl 4

r0,3

NN OOO

= A~ WD

	Static Analysis
	Control-flow analysis

	Reconstituting source
	Disassembly

