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Code obfuscation — It's elusive!

@ Hard to pin down exactly what obfuscation is
@ Hard to devise practically useful algorithms

@ Hard to evaluate the quality of these algorithms.
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hard to extract information.
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Code obfuscation — what is it?

Introduction

Informally, to obfuscate a program P means to transform it
into a program P’ that is still executable but for which it is
hard to extract information.

“Hard?" = Harder than before!

static obfuscation =- obfuscated programs that remain fixed
at runtime.

@ tries to thwart static analysis
@ attacked by dynamic techniques (debugging, emulation,
tracing).

dynamic obfuscators = transform programs continuously at
runtime, keeping them in constant flux.

@ tries to thwart dynamic analysis
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Code obfuscation — Overview

@ Simple obfuscating transformations.
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Code obfuscation — Overview

@ Simple obfuscating transformations.
@ How to design an obfuscation tool.
© Definitions.

© Control-flow transformations.

© Data transformations.

@ Abstraction transformations.

@ Constructing opaque predicates.

© Dynamic obfuscating transformations.
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© Identifier renaming
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Algorithm OBFTP: Identifier renaming

@ Java released 1996 :

¢ decompilation is easy!
@ compiled code < source!

Identifier renaming 6/82



Algorithm OBFTP: Identifier renaming

@ Java released 1996:

¢ decompilation is easy!

@ compiled code < source!
@ Hans Peter Van Vliet

@ released Crema a Java obfuscator.
@ released Mocha Java decompiler.

O RIP

Identifier renaming 6/82



Algorithm OBFTP: Identifier renaming

@ Java released 1996:

¢ decompilation is easy!

@ compiled code < source!
@ Hans Peter Van Vliet

@ released Crema a Java obfuscator.
@ released Mocha Java decompiler.

O RIP
@ It's an obfuscator/decompiler war!

@ HoseMocha kills Mocha (add an instruction after return);
@ Rename identifiers using characters that are legal in the JVM,
but not in Java source.
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Renaming Example

int modexp (
int y,int x[],
int w,int n) {

int R, L;
int k = 0;
int s = 1;
while (k < w) {
if (x[k] == 1)
R = (s*y)¥n;
else
R = s;
s = R*RY%n;
L = R;
k++;
}

return L;

int f1(
int x1,int x2I[],
int x3,int x4) {
int x5, x6;
int x7 = 0;
int x8 = 1;
while (x7 < x3) {
if (x2[x7] == 1)
x5 = (x8*x1)%x4;
else
x5 = x8;
x8 = x5*xx5%x4;
x6 = x5;
X7 ++;
}

return x6;

Identifier renaming
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|dentifier renaming

@ Historical interest.
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|dentifier renaming

@ Historical interest.

@ Decompiler can’t recover information which has been
removed!
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|dentifier renaming

@ Historical interest.

@ Decompiler can’t recover information which has been
removed!

@ Identifier renaming = no performance overhead!
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Algorithm OBFTP

@ In an object-oriented language:

o Use overloading!
@ Give as many declarations as possible the same name!
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Algorithm OBFTP

@ In an object-oriented language:

o Use overloading!
@ Give as many declarations as possible the same name!

@ Algorithm by Paul Tyma:

@ Used in PreEmptive Solutions’ Dash0 Java obfuscator.
o Licensed by Microsoft for Visual Studio
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Algorithm OBFTP

@ Java naming rules:

@ Class names should be globally unique,
@ Field names should be unique within classes
© Methods with different signatures can have the same name.
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Algorithm OBFTP

@ Java naming rules:
@ Class names should be globally unique,
@ Field names should be unique within classes
© Methods with different signatures can have the same name.
@ Algorithm
© Build a graph:
@ nodes are declarations
@ edges between nodes that cannot have the same name
@ Merge methods that must have the same name (because they
override each other) into super-nodes.
© Color the graph with the smallest number of colors (=names)!
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Algorithm OBFTP: Original program

class Felinae {
int color;
int speed;
public void move(int x,int y){}
¥
class Felis extends Felinae {
public void move(int x,int y){}
public void meow(int tone,int length){}
}
class Pantherinae extends Felinae {
public void move(int x,int y){}
public void growl(int tone,int length){}
}
class Panthera extends Pantherinae {
public void move(int x,int y){}

}
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Algorithm OBFTP: Interference graph

class Felinae {
int color;
int speed;
void move (int x,int y)
}
class Felis extends Felinae {
void move (int x,int y){}
void meow(int tone,int len)
}
class Pantherinae extends Felinaedq
void move (int x,int y){}
void growl(int tone,int len)
}
class Panthera extends Pantherinae{
void move (int x,int y)

}

Identifier renaming

Fel i nae. nove
Fel i s. nove
Pant heri nae. nove
Pant her a. nove

e

Pant heri nae
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Algorithm OBFTP: Renamed program

Fel i nae. nove
el i s. nove
Pant her i nae. nove
Pant her a. move

Identifier renaming

class Pink {
int Pink;
int Blue;
public void Blue(int
}
class Blue extends Pink
public void Blue(int
public void Pink(int
}

x,int y){}

{
x,int y){}
tone,int len){}

class Green extends Pink {

public void Blue(int
public void Pink(int
}

x,int y){}
tone,int len){}

class Yellow extends Green {

public void Blue(int
}

x,int y){}

13/82



Outline

9 Complicating control flow
@ Inserting bogus control-flow
@ Control-flow flattening
@ Opaque values from array aliasing
@ Jumps through branch functions

Complicating control flow
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Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:

@ insert bogus control-flow,

Complicating control flow 15/82



Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:

@ insert bogus control-flow,
@ flatten the program

Complicating control flow 15/82



Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:
@ insert bogus control-flow,
@ flatten the program
© hide the targets of branches to make it difficult for the
adversary to build control-flow graphs

Complicating control flow 15/82



Complicating control flow

@ Transformations that make it difficult for an adversary to
analyze the flow-of-control:
@ insert bogus control-flow,
@ flatten the program
© hide the targets of branches to make it difficult for the
adversary to build control-flow graphs

@ None of these transformations are immune to attacks,
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Opaque Expressions

@ Simply put:
an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out
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Opaque Expressions

@ Simply put:
an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

@ Notation:

PT for an opaquely true predicate

PF for an opaquely false predicate

P’ for an opaquely indeterminate predicate
E=" for an opaque expression of value v

<
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Opaque Expressions

@ Simply put:
an expression whose value is known to you as the
defender (at obfuscation time) but which is difficult
for an attacker to figure out

@ Notation:

PT for an opaquely true predicate

PF for an opaquely false predicate

P’ for an opaquely indeterminate predicate
E=" for an opaque expression of value v

<

¢ © @

@ Graphical notation:

ltr_u!e‘falﬂe true false true false

@ Building blocks for many obfuscations.
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Opaque Expressions

@ An opaquely true predicate:

true false
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Opaque Expressions

@ An opaquely true predicate:

true false

NG

@ An opaquely indeterminate predicate:

true false
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Simple Opaque Predicates

@ Look in number theory text books, in the problems sections:
“Show that Vx,y € Z : p(x,y)"
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Simple Opaque Predicates

@ Look in number theory text books, in the problems sections:
“Show that Vx,y € Z : p(x,y)"

o Vx,y €Z: x> —34y? £1

o Vx €Z:2x% +x

Complicating control flow 18/82



Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken
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Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ Insert bogus control-flow into a function:
@ dead branches which will never be taken
@ superfluous branches which will always be taken
© branches which will sometimes be taken and sometimes not,
but where this doesn’t matter
@ The resilience reduces to the resilience of the opaque
predicates.
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Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ |t seems that the blue block is only sometimes executed:
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Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ A bogus block (green) appears as it might be executed while,
in fact, it never will:

21/82
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Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ Sometimes execute the blue block, sometimes the green block.

@ The green and blue blocks should be semantically equivalent.

Complicating control flow

>
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Algorithm OBFCT Jy,oeus: Inserting bogus control-flow

@ Extend a loop condition P by conjoining it with an opaquely
true predicate PT:

ok

false false true true

true E:> false,
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Algorithm o BFWHKD: Control-flow flattening

@ Removes the control-flow structure of functions.
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Algorithm o BFWHKD: Control-flow flattening

@ Removes the control-flow structure of functions.

@ Put each basic block as a case inside a switch statement, and
wrap the switch inside an infinite loop.

@ Known as chenxify, chenxification, after Chenxi Wang:
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int modexp (int y,int x[],
int w,int n) {

int R, L;
int k = 0;
int s = 1; 5 .
while (k < w) { 6 5 [
if (x[k] == 1) ‘ return L ‘ ‘ if (x[k]::l)‘

R = (s*xy) % n;

else Bs: R=(s*y) mod n B :
R = s;

s = RxR % n; \

L = R;

k++; Bs:|s=reR mod n
} L =R
k++
N return L; woto By

[ |




int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=0;

for(;;)

switch (next) {
case 0 : k=0; s=1; next=1; break;
case 1 if (k<w) next=2; else next=6; break;
case 2 if (x[k]==1) next=3; else next=4; break;
case 3 R=(s*y)%n; next=5; break;
case 4 R=s; next=5; break;
case b s=R*R%n; L=R; k++; next=1; break;
case 6 return L;

}




next =0

A

!

sw t ch(next)

k=0
s=1
next =1

By

if (k<w)
next =2

el se
next =6

if (x[k]==1)
next =3

el se
next =4

B1 K\

R=(s*y)%n| | R=s
next =5 next =5
B3 By

S=R* R
L=R

K++

next =1

Bs

return L

Bs




Performance penalty

@ Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.
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Performance penalty

@ Replacing 50% of the branches in three SPEC programs slows
them down by a factor of 4 and increases their size by a factor
of 2.

o Why?

@ The for loop incurs one jump,
@ the switch incurs a bounds check the next variable,
© the switch incurs an indirect jump through a jump table.

@ Optimize?
© Keep tight loops as one switch entry.
@ Use gec's labels-as-values = a jump table lets you jump
directly to the next basic block.

Complicating control flow 28/82



Algorithm OBFWHKD ,j;.5: Control-flow flattening

@ Attack against Chenxification:
@ Work out what the next block of every block is.
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Algorithm OBFWHKD ,j;.5: Control-flow flattening

@ Attack against Chenxification:

@ Work out what the next block of every block is.
@ Rebuild the original CFG!

@ How does an attacker do this?

@ use-def data-flow analysis
@ constant-propagation data-flow analysis

Complicating control flow 29/82



Compute I8 as an opaque predicate!

int modexp(int y, int x[], int w, int n) {
int R, L, k, s;
int next=E~";
for (;;)
switch(next) {
case 0 : k=0; s=1; next=E~'; break;

case 1 : if (k<w) next=E=?; else next=E~®; break

case 2 : if (x[k]==1) next=E=%; else next=E~*;
break ;

case 3 : R=(sxy)%n; next=E~; break;

case 4 : R=s; next=E™®; break;

case 5 : s=RxR%n; L=R; k++; next=E~'; break;

case 6 : return L;
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int modexp(int y,

int R, L, k
int next=0;

S

int x[], int w, int n) {

int g[] = {10,9,2,5,3};

for (;;)

switch(next) {

case
case

case

case

case

case

case

0 :

1

2

IS

k=0; s=1; next=g[0]%g[1]~"; break;

if (k<w) next=g[g[2]]7%;

else next=g[0] —2xg[2]~°; break;

if (x[K]==1) next—g[3] —g[2]~*;

else next:2*g[2]:4; break :

R=(s*y)%n; next=g[4]+g[2]~°;break;
R=s; next=g[0]—g[3]~°; break;

s=R«R%n; L=R; k++; next=g[g[4]]%g[2]~";
break;

return L;




Modify the array at runtime!

A function that rotates an array one step right:

void permute(int g[], int n, int*x m) {

int i;

int tmp=g[n—1];

for(i=n—-2; i>=0; i——) gli+1] = g[i];
g[0]=tmp;

sm = ((*m)+1)%n;

@ Make static array aliasing analysis harder for the attacker!

@ Modify the array at runtime!

Complicating control flow 32/82



int modexp(int y, int x[], int w, int n) {

int R,

L,

k,

int next=0;
int m=0;
int g[] = {10,9,2,5,3};

for (;;)

{

S,

switch(next) {
0 :
1:

case
case

case
case
case

case

case

}

2

3
4

k=0; s=1; next=g[(0+m)%5]%g[(1+m)%5]; brea
if (k<w) next=g[(g[(2+m)%5]4+m)%5];

else next=g[(0+m)%5]—2xg[(24+m)%5]; break;
if (x[k]==1) next=g[(3+m)%5]—g[(2+m)%5];
else next=2xg[(24+m)%5]; break;

: R=(sxy)%n; next=g[(44+m)%5]+g[(24+m)%5]; bre
: R=s; next=g[(04+m)%5]—g[(3+m)%5]; break;
5:

6 :

s=RxR%n ; L=R; k+-+;

next=g[(g[(44+m)%5]4+m)%5]%g[(24+m)%5]; break|;

return L;

permute (g,5,&m);

=




Make the array global!

int g[20]; int m;
int modexp(int y, int x[], int w, int n) {
int R, L, k, s; int next=0;
for (;;)
switch(next) {
case 0 : k=0; s=1; next=g[m+0]%g[m+1]; break;
case 1 if (k<w) next=g[mtg[m+2]];
else next=g[m+0]—-2%xg[m+2]; break;
case 2 if (x[k]l]==1) next=g[m+3]—g[m+2];
else next=2xg[m+2]; break;
case 3 : R = (sx*y)%n; next=g[m+4]+g[m+2]; break;
case 4 : R=s; next=g[m+0]—g[m+3]; break;
case 5 s = RxR%n; L=R; k++;
next=g [mtg [m+4]]%g[m+2]; break;
case 6 : return L;
}
}

Complicating control flow
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With the array global you can initialize it differently at different
call sites:

g[0]=10; g[1]=9; g[2]=2; g[3]=5; g[4]=3; m=0;
modexp(y, X, w, n);

g[5]—10 g[6]=9; g[7]=2; g[8]=5; g[9]=3; m=5;
modexp(y, X, w, n);




Sprinkle pointer variables (pink), pointer manipulations (blue),

dead code (green) over the program:

int modexp(int y, int x[], int w, int n) {
int R, L, k, s; int next=0;
int g[] = {10,9,2,5,3,42}; intx g2; intx gr;
for (;;)
switch(next) {

case 0 : k=0; g2=&g[2]; s=1; next=g[0]%g][1];

gr=&g[5]; break;

case 1 if (k<w) next=g[xg2];
else next=g[0] —2xg[2]; break;
case 2 if (x[k]==1) next=g[3] —*g2;
else next=2xxg2; break;
case 3 : R=(sxy)%n; next=g[4]+xg2; break;
case 4 : R=s; next=g[0]—g[3]; break;
case 5 : s=R«RVn;L=R;k++; next=g[g[4]]% *g2; break ;
case 6 : return L;
case 7 : %g2=666; next=xgr%2; gr=&g[+g2]; break;
}




Algorithm OBFWHKD ;.5

@ Hopefully, because of the obfuscated manipulations the
attacker's static analysis will conclude that nothing can be
deduced about next.
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Algorithm OBFWHKD ;.5

@ Hopefully, because of the obfuscated manipulations the
attacker's static analysis will conclude that nothing can be

deduced about next.
@ Not knowing next, he can’t rebuild the CFG.
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Algorithm OBFWHKD ;.5

@ Hopefully, because of the obfuscated manipulations the
attacker's static analysis will conclude that nothing can be
deduced about next.

@ Not knowing next, he can’t rebuild the CFG.
@ Symbolic execution? We know next starts at 0...

37/82
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OBFWHKD paque: Opaque values from array aliasing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1
136|581 /2623 |5 16]6s|2]ar|2]7]137[0o]n]16][2]2

Invariants:

O every third cell (in pink), starting will cell 0, is =1 mod 5;
@ cells 2 and 5 (green) hold the values 1 and 5, respectively;
© every third cell (in blue), starting will cell 1, is =2 mod 7;
Q cells 8 and 11 (yellow) hold the values 2 and 7, respectively.

You can update a pink element as often as you want, with any
value you want, as long as you ensure that the value is always
=1 mod 5!
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int g[] = {36,58,1,46,23,5,16,65,2,41,
2,7,1,37,0,11,16,2,21,16};

if ((g[3] % g[5])==¢g[2])
printf("true!\n");

g[5] = (g[l]xg[4])%g[11] + g[6]%g[5];
g[l4] = rand();

g[4] = rand()*xg[l1l]+g[8];

int six = (g[4] + g[7] + g[10])%¢g[11];
int seven = six + g[3]%g[5];
int fortytwo = six * seven;

@ pink: opaquely true predicate.
@ blue: g is constantly changing at runtime.
@ green: an opaque value 42.

Initialize g at runtime!



OBFLDK: Jumps through branch functions

@ Replace unconditional jumps with a call to a branch function.

@ Calls normally return to where they came from...But, a
branch function returns to the target of the jump!

a bf () {
jmp b 5 call bf return to T[h(a)]+ a
’ }
E> b Tlh(a)] =b—a
b: b: T[h(..)]=...

Complicating control flow 40/82



OBFLDK: Make branches explicit

Complicating control flow

int modexp (int y,int xI[I],
int w,int n) {
int R, L;
int k = 0; int s = 1;
while (k < w) {

if (x[k] == 1)
R = (s*xy) % n;
else
R = s;
s = R*R % n;
L = R;
k++;

}

return L;
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OBFLDK: Jumps through branch functions

@ A table T stores
T[h(a,)] = b,' — aj.

@ Code in pink updated the return address!

@ The branch function:

char* T[2];
void bf () {
char* old;

asm volatile ("movl 4(%%ebp) ,%0\n\t" : "=r" (old));
char* new = (charx*)((int)T[h(old)] + (int)old);
asm volatile ("movl %0,4(%%ebp)\n\t" : : "r" (new));
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int modexp(int y, int x[], int w, int n) {
int R, L; int k¥ = 0; int s = 1;
T[h(&&retaddrl)]=(char*) (&&endif -&&retaddrl);
T[h(&&retaddr2)]=(char*) (4&beginloop -&&retaddr2) ;

beginloop:
if (k >= w) goto endloop;
if (x[k] !'= 1) goto elsepart;
R = (s*xy) % n;
bf (); // goto endif;
retaddrl :
asm volatile (".ascii \"bogus\"\n\t");
elsepart:
R = s;
endif:
s = R*R % n;
L = R;
k++;
bf () ; // goto beginloop;
retaddr2:
endloop:

return L;




OBFLDK: Jumps through branch functions

Designed to confuse disassembly.

39% of instructions are incorrectly assembled using a linear
sweep disassembly.

[

25% for recursive disassembly.

(]

Execution penalty: 13%

Increase in text segment size: 15%.
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Outline

@ Opaque Predicates
@ Opaque predicates from pointer aliasing
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Constructing opaque predicates

@ Construct them based on
@ number theoretic results
o Vx,y €EZ: x> —34y% £1
o VxE€Z:2|x* +x
@ the hardness of alias analysis
o the hardness of concurrency analysis
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Constructing opaque predicates

@ Construct them based on
@ number theoretic results
o Vx,y €EZ: x> —34y% £1
o VxE€Z:2|x* +x
@ the hardness of alias analysis
o the hardness of concurrency analysis
@ Protect them by
¢ making them hard to find
¢ making them hard to break
@ If your obfuscator keeps a table of predicates, your adversary
will too!

Opaque Predicates 46/82



Algorithm OBFCT J,ji.s: Opaque predicates from pointer

aliasing

@ Create an obfuscating transformation from a known
computationally hard static analysis problem.
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Algorithm OBFCT J,ji.s: Opaque predicates from pointer

aliasing

@ Create an obfuscating transformation from a known
computationally hard static analysis problem.
@ We assume that

@ the attacker will analyze the program statically, and

@ we can force him to solve a particular static analysis problem
to discover the secret he's after, and

© we can generate an actual hard instance of this problem for
him to solve.
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Algorithm OBFCT J,ji.s: Opaque predicates from pointer

aliasing

@ Create an obfuscating transformation from a known
computationally hard static analysis problem.
@ We assume that

@ the attacker will analyze the program statically, and

@ we can force him to solve a particular static analysis problem
to discover the secret he's after, and

© we can generate an actual hard instance of this problem for
him to solve.

o Of course, these assumptions may be false!
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Algorithm OBFCTJ a5

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

RCECHCEC)
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Algorithm OBFCTJ a5

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g; and g point into two graphs G; (pink) and Gy (blue):
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Algorithm OBFCTJ a5

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g; and g point into two graphs G; (pink) and Gy (blue):
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Algorithm OBFCTJ a5

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g; and g point into two graphs G; (pink) and Gy (blue):

split W insert
RCRCECHCHE il

=
5ed . Ges

a1 I::> a1
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Algorithm OBFCTJ a5

@ Construct one or more heap-based graphs, keep pointers into
those graphs, create opaque predicates by checking properties
you know to be true.

@ g; and g point into two graphs G; (pink) and Gy (blue):

. 59 .
@

1

W@”@

9@ %@

FEeE &
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Algorithm OBFCTJ a5

@ Two invariants:

o "Gy and G, are circular linked lists”
@ "g; points to a node in G; and g points to a node in Gy."
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Algorithm OBFCTJ a5

@ Two invariants:

o "Gy and G, are circular linked lists”
@ "g; points to a node in G; and g points to a node in Gy."

@ Perform enough operations to confuse even the most precise
alias analysis algorithm,
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Algorithm OBFCTJ a5

@ Two invariants:

o "Gy and G, are circular linked lists”
@ "g; points to a node in G; and g points to a node in Gy."

@ Perform enough operations to confuse even the most precise
alias analysis algorithm,

o Insert opaque queries such as (g1 # g2)7 into the code.

Opaque Predicates 49/82



Algorithm OBFCTJpinter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.
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Algorithm OBFCTJpinter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

@ Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!
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Algorithm OBFCT Jginter: Opaque predicates from

concurrency

@ Concurrent programs are difficult to analyze statically: n
statements in a parallel region can execute in n! different
orders.

@ Construct opaque predicates based on the difficulty of
analyzing the threading behavior of programs!

o Keep a global data structure G with a certain set of invariants
I, to concurrently update G while maintaining /, and use / to
construct opaque predicates over G
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Opaque predicates from concurrency

Lo
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

@ Thread T, updates ¢ and d.
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Opaque predicates from concurrency

@ Thread T; updates a and b, such that each time a is updated
to point to its next node in the cycle, b is also updated to
point to its next node in the cycle.

@ Thread T, updates ¢ and d.

@ Opaquely true predicate (a = b)7 is statically
indistinguishable from an opaquely false predicate (c = d)F!

Opaque Predicates 52/82



Outline

© Data encodings
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Encoding literal data

@ Literal data often carries much semantic information:

o "Please enter your password:"
@ 0xA17BCOTATESF. . .FF67 (maybe a cryptographic key??7?)
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Encoding literal data
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o "Please enter your password:"
@ 0xA17BCOTATESF. . .FF67 (maybe a cryptographic key??7?)
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@ Xor with a constant.
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Encoding literal data

@ Literal data often carries much semantic information:

o "Please enter your password:"
@ 0xA17BCOTATESF. . .FF67 (maybe a cryptographic key??7?)

@ Split up in pieces.
@ Xor with a constant.

@ Avoid ever reconstituting the literal in cleartext! (What about
printf?)
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Encoding literal data

Literal data often carries much semantic information:

(]

o "Please enter your password:"
@ 0xA17BCOTATESF. . .FF67 (maybe a cryptographic key??7?)

(]

Split up in pieces.

(]

Xor with a constant.

@ Avoid ever reconstituting the literal in cleartext! (What about
printf?)
@ Print each character one at a time?

Data encodings 54/82



Convert literals to code — Mealy machine

® Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)
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Convert literals to code — Mealy machine

® Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

@ The machine takes a bitstring and a state transition table as
input and and generates a string as output.

Data encodings 55/82



Convert literals to code — Mealy machine

® Encode the strings "MIMI" and "MILA" in a finite state
transducer (a Mealy machine)

@ The machine takes a bitstring and a state transition table as
input and and generates a string as output.

® Mealy(102) produces "MIMI".
® Mealy(1102) produces "MILA".

Data encodings 55/82



Convert literals to code — Mealy machine

int next[][2] =
{{1,2},
{3,0},
{3,2}};

char out [][2] =
{{71[17,’17},
{’i2,°21i°}%,

{’a’,’b}};

i/o . . .
o 5 L> S1 means in state sp on input / transfer to state s; and
produce an o.

@ next[state|[input]=next state
@ out[state|[input]=output
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Mealy machine — table driven

char* mealy(int v) {

char* str=(char*)malloc (10);

int state=0,len=0;

while (state!=3) {
int input = 1&v; v >>= 1;
str[len++]=out [state] [input];
state = next[state][input];

¥

str[len]=’\0";

return str;
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Mealy machine — hardcoded

char* mealy(int v) {
char* str=(char*)malloc (10);
int state=0,len=0;
while (1) {
int input = 1&v; v >>= 1;
switch (state) {
case 0: state=(input==0)71:2;
str[len++]=(input==0)7’m’:’1’; break;
case 1: state=(input==0)73:0;
str[len++]=’i’; break;
case 2: state=(input==0)73:2;
str[len++]=(input==0)7’a’:’b’; break;
case 3: str[len]=’\0’; return str;
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Outline

© Dynamic Obfuscation
9 Self-Modifying State Machine
9 Code as key material
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Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior to execution.
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Static vs. Dynamic obfuscation

@ Static obfuscations transform the code prior to execution.
@ Dynamic algorithms transform the program at runtime.
@ Static obfuscation counter attacks by static analysis.

@ Dynamic obfuscation counter attacks by dynamic analysis.
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Static vs. Dynamic obfuscation

@ Statically obfuscated code: the attacker sees the same mess
every time.
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Static vs. Dynamic obfuscation

@ Statically obfuscated code: the attacker sees the same mess
every time.

@ Dynamic obfuscated code: the execution path changes as the
program runs.

@ Some algorithms are “semi-dynamic” — they perform a small,
constant number of transformations (often one) at runtime
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Static vs. Dynamic obfuscation

@ Statically obfuscated code: the attacker sees the same mess
every time.

@ Dynamic obfuscated code: the execution path changes as the
program runs.

@ Some algorithms are “semi-dynamic” — they perform a small,
constant number of transformations (often one) at runtime

@ Some algorithms are continuous: the code is in constant flux.

Dynamic Obfuscation 61/82



Dynamic Obfuscation: Definitions

@ A dynamic obfuscator runs in two phases:
@ At compile-time transform the program to an initial
configuration and add a runtime code-transformer.
@ At runtime, intersperse the execution of the program with
calls to the transformer.
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Dynamic Obfuscation: Definitions

@ A dynamic obfuscator runs in two phases:
@ At compile-time transform the program to an initial
configuration and add a runtime code-transformer.
@ At runtime, intersperse the execution of the program with
calls to the transformer.
@ A dynamic obfuscator turns a “normal” program into a
self-modifying one.
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Modeling dynamic obfuscation — compile-time
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Modeling dynamic obfuscation — compile-time

J

P l::> Create I nitial
Configuration

@ Transformer | creates P'’s initial configuration.
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Modeling dynamic obfuscation — compile-time

e

J

Create Initial
Configuration

I

J

Embed Runtime|

Transformer

@ Transformer | creates P'’s initial configuration.

@ T is the runtime obfuscator, embedded in P’.

Dynamic Obfuscation
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Modeling dynamic obfuscation — runtime

7

@ Transformer T continuously modifies P’ at runtime.
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Modeling dynamic obfuscation — runtime

Tringm

@ Transformer T continuously modifies P’ at runtime.
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Modeling dynamic obfuscation — runtime

Cringmo i

@ Transformer T continuously modifies P’ at runtime.
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Modeling dynamic obfuscation — runtime

Triegme e

@ Transformer T continuously modifies P’ at runtime.
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Modeling dynamic obfuscation — runtime

friefrofiof@o-

@ Transformer T continuously modifies P’ at runtime.
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Modeling dynamic obfuscation — runtime

Triegme Gl el o i

@ Transformer T continuously modifies P’ at runtime.
@ We'd like an infinite, non-repeating series of configurations.

@ In practice, the configurations repeat.
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Dynamic obfuscation: Aucsmith’s algorithm

Cop :

Ci:

Cs:
Cs:
Cy :

C52

@ A function is split into cells.
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Dynamic obfuscation: Aucsmith’s algorithm

Cop :

Ci:

Cs:
Cs:
Cy :

C52

@ A function is split into cells.

@ The cells are divided into two regions in memory, upper and
lower.
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One step

Dynamic Obfuscation

Co:
Ci:
Csy:
Cs:
Cy:
Cs :

] | NN

orig

Co:
(O
Cs:
Cs:
Cy:

S| | |

2 .

6682



il
- - B
]

Dynamic Obfuscation 67/82



The Dynamic Primitive — Aucsmith
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The Dynamic Primitive — Aucsmith
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The Dynamic Primitive — Aucsmith
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Why does this work?
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Why does this work?
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OBFCKSP: Code as key material

@ Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.
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OBFCKSP: Code as key material

@ Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.
o Extremes:

© Decrypt the next instruction, execute it, re-encrypt it, ... =
only one instruction is ever in the clear!
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OBFCKSP: Code as key material

@ Encrypt the code to keep as little code as possible in the clear
at any point in time during execution.
o Extremes:

© Decrypt the next instruction, execute it, re-encrypt it, ... =
only one instruction is ever in the clear!

@ Decrypt the entire program once, prior to execution, and leave
it in cleartext. = easy for the adversary to capture the code.
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OBFCKSP: Code as key material

@ The entire program is encrypted — except for main.
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OBFCKSP: Code as key material

The entire program is encrypted — except for main.
Before you jump to a function you decrypt it.
When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

e © 6 ¢ ¢

Before returning, a function decrypts its caller.
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OBFCKSP: Code as key material

The entire program is encrypted — except for main.
Before you jump to a function you decrypt it.

When the function returns you re-encrypt it.

On entry, a function first encrypts its caller.

Before returning, a function decrypts its caller.

e © ¢ ¢ ¢ ¢

= At most two functions are ever in the clear!
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OBFCKSP: Code as key material

@ What do we use as key? The code itself!
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OBFCKSP: Code as key material

@ What do we use as key? The code itself!

@ What cipher do we use? Something simple!
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OBFCKSP: Code as key material

@ In the simplest case the call-graph is tree-shaped:
mai n

get key
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OBFCKSP: Code as key material

@ In the simplest case the call-graph is tree-shaped:
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@ Before and after every procedure cally you insert calls to a
guard function that decrypts/re-encrypts the callee, using a
hash of the cleartext of the caller as key.
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OBFCKSP: Code as key material

@ In the simplest case the call-graph is tree-shaped:
mai n

get key

@ Before and after every procedure cally you insert calls to a
guard function that decrypts/re-encrypts the callee, using a
hash of the cleartext of the caller as key.

@ On entrance and exit of the callee you encrypt/decrypt the
caller using a hash of the cleartext of the callee as key.
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int player_main (int argc, char xargv[]) {
int user_key = Oxca7callb;
int digital_medial[] = {10,102};
guard (play,playSIZE,player_main,player_mainSIZE);
play(user_key ,digital_media ,2);
guard (play,playSIZE,player_main,player_mainSIZE);
}
int getkey (int user_key) {
guard (decrypt ,decryptSIZE , getkey ,getkeySIZE);
int player_key = Oxbabeca75;
int v = user_key ~ player_key;
guard (decrypt ,decryptSIZE ,getkey ,getkeySIZE);
return v;
}
int decrypt (int user_key, int media) {
guard (play,playSIZE,decrypt ,decryptSIZE) ;
guard (getkey , getkeySIZE ,decrypt ,decryptSIZE);
int key = getkey(user_key);
guard (getkey ,getkeySIZE ,decrypt ,decryptSIZE);
int v = media ~ key;
guard (play ,playSIZE,decrypt ,decryptSIZE);
return v;




float decode (int digital) {
guard (play ,playSIZE,decode ,decodeSIZE);
float v = (float)digital;
guard (play,playSIZE,decode ,decodeSIZE);
return v;
}
void play(int user_key, int digital_medial[], int len) {
int i;
guard (player_main ,player_mainSIZE ,play,playSIZE);
for(i=0;i<len;i++) {
guard (decrypt ,decryptSIZE ,play,playSIZE);
int digital = decrypt (user_key,digital_medialil]);
guard (decrypt ,decryptSIZE ,play,playSIZE);

guard (decode ,decodeSIZE ,play,playSIZE);
printf ("%£f\n",decode (digital));
guard (decode ,decodeSIZE ,play,playSIZE);
}
guard (player_main ,player_mainSIZE ,play,playSIZE);




void crypto (waddr_t proc,uint32 key,int words)
int i;
for(i=1; i<words; i++) {
xproc "= key;
proc++;

}

void guard (waddr_t proc,int proc_words,
waddr_t key_proc,int key_words) {
uint32 key = hashl(key_proc, key_words);
crypto(proc,key, proc_words);




OBFCKSP: Code as key material

@ So, what if the call-graph is shaped like a DAG, like this:

What key to use to decrypt a?
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What key to use to decrypt a?
@ We can’t use the cleartext of the caller as key, because now
there are two callers!
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OBFCKSP: Code as key material

@ So, what if the call-graph is shaped like a DAG, like this:

What key to use to decrypt a?

@ We can’t use the cleartext of the caller as key, because now
there are two callers!

o Let the callers’ callers(c1 and c2) do the decryption using a
combination of the ciphertexts of b1l and b2.
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OBFCKSP: Code as key material

@ What if the program is recursive?
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OBFCKSP: Code as key material

@ What if the program is recursive?

@ Keep the entire cycle in cleartext. ...
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Code Obfuscation — What's it Good For?

o Diversification — make every program unique to prevent
malware attacks
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Code Obfuscation — What's it Good For?

Discussion

Diversification — make every program unique to prevent
malware attacks

Prevent collusion — make every program unique to prevent
diffing attacks

Code Privacy — make programs hard to understand to
protect algorithms

Data Privacy — make programs hard to understand to
protect secret data (keys)

Integrity — make programs hard to understand to make them
hard to change
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Common Obfuscating Transformations

@ Many obfuscating transformations are built on some simple
general operations:
@ Splitting/Merging
Duplication
Reordering
Mapping
Indirection
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Common Obfuscating Transformations

@ Many obfuscating transformations are built on some simple
general operations:

Splitting/Merging

Duplication

Reordering

Mapping

Indirection

<

o
]
]
]

@ Apply these basic operations to

o Control structures
o Data structures
o Abstractions
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Static VS. Dynamic Obfuscation

@ Static obfuscations confuse static analysis.

@ Dynamic obfuscations confuse static and dynamic analysis.

o the code segment is treated as code and data

@ Dynamic algorithms generate self-modifying code. Bad for
performance:
@ flush instruction pipeline
@ write data caches to memory
© invalidate instruction caches

Discussion
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