
CSc 466/566

Computer Security

8 : Cryptography — Digital Signatures
Version: 2013/02/27 16:35:08

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2013 Christian Collberg

Christian Collberg

1/36

collberg@gmail.com


Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

Introduction 2/36



Digital Signatures

In this lecture we are going to talk about
cryptographic hash functions (checksums) and
digital signatures .

We want to be able to
1 Detect tampering : is the message we received the same as the

message that was sent?
2 Authenticate : did the message come from who we think it

came from?

Introduction 3/36



Digital Signatures. . .

More specifically, we want to ensure:
1 Nonforgeability : Eve should not be able to create a message

that appears to come from Alice.
2 Nonmutability : Eve should not be able to take a valid

signature for one message from Alice, and apply it to another
one.

3 Nonrepudiation : Alice should not be able to claim she didn’t
sign a document that she did sign.

Introduction 4/36



Digital Signatures. . .

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

Introduction 5/36



Digital Signatures. . .

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

Introduction 5/36



Digital Signatures. . .

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

2 Alice sends M and the signature SAlice(M) to Bob.

Introduction 5/36



Digital Signatures. . .

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

2 Alice sends M and the signature SAlice(M) to Bob.

3 Bob decrypts the document using Alice’s public key , thereby
verifying her signature.

Introduction 5/36



Digital Signatures. . .

This works because for many public key ciphers

DSB (EPB
(M)) = M

EPB
(DSB (M)) = M

i.e. we can reverse the encryption/decryption operations.

That is, Bob can apply the decryption function to a message
with his private key SB , yielding the signature sig:

sig ← DSB (M)

Then, anyone else can apply the encryption function to sig to
get the message back. Only Bob (who has his secret key)
could have generated the signature:

EPB
(sig) = M

Introduction 6/36



Digital Signatures. . .

Bob Alice

M Bob sent M?



Digital Signatures. . .

Bob Alice

M sig ← DSB (M) Bob sent M?

SB



Digital Signatures. . .

Bob Alice

M sig ← DSB (M) M, sig Bob sent M?

SB



Digital Signatures. . .

Bob Alice

M sig ← DSB (M) M, sig M
?
= EPB

(sig) Bob sent M?

SB PB

Introduction 7/36



Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

RSA Signature Scheme 8/36



RSA Signature Scheme

RSA Signature Scheme 9/36



RSA Signature Scheme

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

RSA Signature Scheme 9/36



RSA Signature Scheme

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

2 Alice sends M and the signature SAlice(M) to Bob.

RSA Signature Scheme 9/36



RSA Signature Scheme

1 Alice encrypts her document M with her private key SA,
thereby creating a signature SAlice(M).

2 Alice sends M and the signature SAlice(M) to Bob.

3 Bob decrypts the document using Alice’s public key , thereby
verifying her signature.

RSA Signature Scheme 9/36



RSA Encryption: Algorithm

Bob (Key generation):

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (e, n).

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (e, n).
2 Compute C = Me mod n.

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (e, n).
2 Compute C = Me mod n.

Bob (decrypt a message C received from Alice):

RSA Signature Scheme 10/36



RSA Encryption: Algorithm

Bob (Key generation):
1 Generate two large random primes p and q.
2 Compute n = pq.
3 Select a small odd integer e relatively prime with φ(n).
4 Compute φ(n) = (p − 1)(q − 1).
5 Compute d = e−1 mod φ(n).

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (e, n).
2 Compute C = Me mod n.

Bob (decrypt a message C received from Alice):
1 Compute M = C d mod n.

RSA Signature Scheme 10/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.
2 Send M , S to Alice.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.
2 Send M , S to Alice.

Alice (verify signature S received from Bob):

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.
2 Send M , S to Alice.

Alice (verify signature S received from Bob):
1 Receive M , S from Alice.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.
2 Send M , S to Alice.

Alice (verify signature S received from Bob):
1 Receive M , S from Alice.

2 Verify that M
?
= Se mod n.

RSA Signature Scheme 11/36



RSA Signature Scheme: Correctness

We have:

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Alice wants to verify that M
?
= Se mod n.

Se mod n = Mde mod n

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Alice wants to verify that M
?
= Se mod n.

Se mod n = Mde mod n

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Alice wants to verify that M
?
= Se mod n.

Se mod n = Mde mod n

= Mde mod φ(n) mod n

RSA Signature Scheme 12/36



RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Alice wants to verify that M
?
= Se mod n.

Se mod n = Mde mod n

= Mde mod φ(n) mod n

= M1 mod n = M

RSA Signature Scheme 12/36



RSA signature: Nonforgeability

Nonforgeability : Eve should not be able to create a message
that appears to come from Alice.

RSA Signature Scheme 13/36



RSA signature: Nonforgeability

Nonforgeability : Eve should not be able to create a message
that appears to come from Alice.

To forge a message M from Alice, Eve would have to produce

Md mod n

without knowing Alice’s private key d .

RSA Signature Scheme 13/36



RSA signature: Nonforgeability

Nonforgeability : Eve should not be able to create a message
that appears to come from Alice.

To forge a message M from Alice, Eve would have to produce

Md mod n

without knowing Alice’s private key d .

This is equivalent to being able to break RSA encryption.

RSA Signature Scheme 13/36



RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA Signature Scheme 14/36



RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA does not achieve nonmutability.

RSA Signature Scheme 14/36



RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA does not achieve nonmutability.

Assume Eve has two valid signatures from Alice, on two
messages M1 and M2:

S1 = Md
1 mod n

S2 = Md
2 mod n

RSA Signature Scheme 14/36



RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA does not achieve nonmutability.

Assume Eve has two valid signatures from Alice, on two
messages M1 and M2:

S1 = Md
1 mod n

S2 = Md
2 mod n

Eve can then produce a new signature

S1 · S2 = (Md
1 mod n) · (Md

2 mod n)

= (M1 ·M2)
d mod n

This is a valid signature for the message M1 ·M2!

RSA Signature Scheme 14/36



RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA does not achieve nonmutability.

Assume Eve has two valid signatures from Alice, on two
messages M1 and M2:

S1 = Md
1 mod n

S2 = Md
2 mod n

Eve can then produce a new signature

S1 · S2 = (Md
1 mod n) · (Md

2 mod n)

= (M1 ·M2)
d mod n

This is a valid signature for the message M1 ·M2!

Not usually a problem since we normally sign hashes.

RSA Signature Scheme 14/36



Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

Elgamal Signature Scheme 15/36



Elgamal: Encryption Algorithm

Bob (Key generation):

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).
2 Pick a random number k between 1 and p − 2.

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).
2 Pick a random number k between 1 and p − 2.
3 Compute the ciphertext C = (a, b):

a = g k mod p

b = Myk mod p

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).
2 Pick a random number k between 1 and p − 2.
3 Compute the ciphertext C = (a, b):

a = g k mod p

b = Myk mod p

Bob (decrypt a message C = (a, b) received from Alice):

Elgamal Signature Scheme 16/36



Elgamal: Encryption Algorithm

Bob (Key generation):
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PB = (p, g , y) is Bob’s RSA public key.
SB = x is Bob’ RSA private key.

Alice (encrypt and send a message M to Bob):
1 Get Bob’s public key PB = (p, g , y).
2 Pick a random number k between 1 and p − 2.
3 Compute the ciphertext C = (a, b):

a = g k mod p

b = Myk mod p

Bob (decrypt a message C = (a, b) received from Alice):
1 Compute M = b(ax)−1 mod p.

Elgamal Signature Scheme 16/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Alice (sign message M and send to Bob):

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Alice (sign message M and send to Bob):
1 Pick a random number k .

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Alice (sign message M and send to Bob):
1 Pick a random number k .
2 Compute the signature S = (a, b):

a = g k mod p

b = k−1(M − xa) mod (p − 1)

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Alice (sign message M and send to Bob):
1 Pick a random number k .
2 Compute the signature S = (a, b):

a = g k mod p

b = k−1(M − xa) mod (p − 1)

Bob (verify the signature S = (a, b) received from Alice):

Elgamal Signature Scheme 17/36



Elgamal: Signature Algorithm

Alice (Key generation): As before.
1 Pick a prime p.
2 Find a generator g for Zp .
3 Pick a random number x between 1 and p − 2.
4 Compute y = g x mod p.

PA = (p, g , y) is Alice’s RSA public key.
SA = x is Alice’ RSA private key.

Alice (sign message M and send to Bob):
1 Pick a random number k .
2 Compute the signature S = (a, b):

a = g k mod p

b = k−1(M − xa) mod (p − 1)

Bob (verify the signature S = (a, b) received from Alice):

1 Verify ya · ab mod p
?
= gM mod p.

Elgamal Signature Scheme 17/36



Elgamal Signature Algorithm: Correctness

We have:

y = gx mod p

a = gk mod p

b = k−1(M − xa) mod (p − 1)

Show that ya · ab mod p = gM mod p.

yaab mod p = (gx mod p)a((gk mod p)(k−1(M − xa) mod (p − 1)) mo

= gxagkk−1(M−xa) mod (p−1) mod p

= gxag (M−xa) mod (p−1) mod p

= gxagM−xa mod p

= gxa+M−xa mod p

= gM mod p

Elgamal Signature Scheme 18/36



Elgamal Signature Algorithm: Security

We have:

y = gx mod p

a = gk mod p

b = k−1(M − xa) mod (p − 1)

k is random ⇒ b is random!

To the adversary, b looks completely random.

The adversary must compute k from a = gk mod p ⇔
compute discrete log!

If Alice reuses k ⇒ The adversary can compute the secret key.

Elgamal Signature Scheme 19/36



Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

Cryptographic Hash Functions 20/36



Cryptographic Hash Functions

Public key algorithms are too slow to sign large documents. A
better protocol is to use a one way hash function also known
as a cryptographic hash function (CHF).

CHFs are checksums or compression functions : they take an
arbitrary block of data and generate a unique, short,
fixed-size, bitstring.

✞ ☎

> echo ” h e l l o ” | sha1sum
f572d396 f a e9206628714 fb2ce00 f 72e94 f 2258 f −
> echo ” h e l l a ” | sha1sum
1519 ca327399f9d699a fb0f8a3b7e1ea9d1edd0c −
> echo ”can ’ t b e l i e v e i t ’ s not b u t t e r ! ” | sha1sum
34 e780e19b07b003b7c f1babba8e f7399b7f81dd −
✝ ✆

Cryptographic Hash Functions 21/36



Signature Protocol

1 Bob computes a one-way hash of his document.

hash ← h(M)

sig ← ESB (hash)

DPB
(sig)

?
= h(M)

Cryptographic Hash Functions 22/36



Signature Protocol

1 Bob computes a one-way hash of his document.

2 Bob encrypts the hash with his private key, thereby signing it.

hash ← h(M)

sig ← ESB (hash)

DPB
(sig)

?
= h(M)

Cryptographic Hash Functions 22/36



Signature Protocol

1 Bob computes a one-way hash of his document.

2 Bob encrypts the hash with his private key, thereby signing it.

3 Bob sends the encrypted hash and the document to Alice.

hash ← h(M)

sig ← ESB (hash)

DPB
(sig)

?
= h(M)

Cryptographic Hash Functions 22/36



Signature Protocol

1 Bob computes a one-way hash of his document.

2 Bob encrypts the hash with his private key, thereby signing it.

3 Bob sends the encrypted hash and the document to Alice.

4 Alice decrypts the hash Bob sent him, and compares it against
a hash she computes herself of the document. If they are the
same, the signature is valid.

hash ← h(M)

sig ← ESB (hash)

DPB
(sig)

?
= h(M)

Cryptographic Hash Functions 22/36



Signature Protocol. . .

Bob Alice

M Bob sent M?

Advantage : the signature is short; defends against MITM
attack.



Signature Protocol. . .

Bob Alice

M hash← h(M) Bob sent M?

Advantage : the signature is short; defends against MITM
attack.



Signature Protocol. . .

Bob Alice

M hash← h(M) S ← ESB (hash) Bob sent M?

SB

Advantage : the signature is short; defends against MITM
attack.



Signature Protocol. . .

Bob Alice

M hash← h(M) S ← ESB (hash) M,S Bob sent M?

SB

Advantage : the signature is short; defends against MITM
attack.



Signature Protocol. . .

Bob Alice

M hash← h(M) S ← ESB (hash) M,S DPB
(S)

?
= h(M) Bob sent M?

SB PB

Advantage : the signature is short; defends against MITM
attack.

Cryptographic Hash Functions 23/36



Cryptographic Hash Functions. . .

CHFs should be
1 deterministic
2 one-way
3 collision-resistant

i.e., easy to compute, but hard to invert .

I.e.

given message M , it’s easy to compute y ← h(M);
given a value y it’s hard to compute an M such that
y = h(M).

This is what we mean by CHFs being one-way .

Cryptographic Hash Functions 24/36



Weak vs. Strong Collision Resistance

CHFs also have the property to be collision resistant .

Weak collision resistance :

Assume you have a message M with hash value h(M).
Then it should be hard to find a different message M ′ such
that h(M) = h(M ′).

Strong collision resistance :

It should be hard to find two different message M1 and M2

such that h(M1) = h(M2).

Strong collisions resistance is hard to prove.

Cryptographic Hash Functions 25/36



Merkle-Damgøard Construction

Hash functions are often built on a compression function
C (X ,Y ):

C
Y

X
length(X )=m

length(Y )=length(Y ′)=n

Y ′

X is (a piece of) the message we’re hashing.

Y and Y ′ is the hash value we’re computing.

Cryptographic Hash Functions 26/36



Merkle-Damg̊ard Construction. . .

C C CCC
v = d0

d1

M1 M2 M3 M4 M5

d2 d3
d5 = d

d4

For long messages M we break it into pieces M1, . . . ,Mk ,
each of size m.

Our initial hash value is an initialization vector v .

We then compress one Mi at a time, chaining it together on
the previous hash value.

Cryptographic Hash Functions 27/36



Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

Birthday attacks 28/36



The Birthday Problem

Given a group of n people, what is the probability that two
share a birthday?

Examine the probability that no two share a birthday: (let Bi

be person i’s birthday)

n = 1 : 1
n = 2 : 364/365
n = 3 : probability that B3 differs from both B1 and B2 and
that none of the first two share a birthday: 363/365 ∗ 364/365
n = 4 :, probability that B4 differs from all of B1...3 and that
none of the first three share a birthday:
362/365 ∗ (363/365 ∗ 364/365)
and so on . . .

Birthday attacks 29/36



The Birthday Problem

This generalizes to

365!

365n(365 − n)!

It takes only 23 people to give greater than .5 probability that
two people share a birthday in a domain with cardinality 365.

For a domain with cardinality c , .5 probability is reached with
approximately 1.2

√
c numbers.

So what does this have to do with checksums?

Birthday attacks 30/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Eve needs to generate ≈ 2b inputs to find a collision, right?

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Eve needs to generate ≈ 2b inputs to find a collision, right?

Wrong! By the birthday paradox, it is likely that two
messages will have the same hash value!

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Eve needs to generate ≈ 2b inputs to find a collision, right?

Wrong! By the birthday paradox, it is likely that two
messages will have the same hash value!

Security is ≈ 2b/2 not 2b.

Birthday attacks 31/36



The Birthday Problem. . .

Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Eve needs to generate ≈ 2b inputs to find a collision, right?

Wrong! By the birthday paradox, it is likely that two
messages will have the same hash value!

Security is ≈ 2b/2 not 2b.

Thus, a hash-function with 256-bit output has 128-bit security.

Birthday attacks 31/36



Birthday Attacks

Little Billy wants to be the sole beneficiary of Grandma’s will

He prepares two message templates, like the one Charlie
made, one being a field trip permission slip, and the other
being a will in which Grandma bequeaths everything to her
sweet grandson.

Little Billy finds a pair of messages, one generated from each
template, with equal checksums

Little Billy has Grandma sign the field trip permission slip

Little Billy now has a signature that checks out against the
will he created

Profit!!

Birthday attacks 32/36



Outline

1 Introduction
2 RSA Signature Scheme
3 Elgamal Signature Scheme
4 Cryptographic Hash Functions
5 Birthday attacks
6 Summary

Summary 33/36



Summary

Digital signatures make a message tamper-proof and give us
authentication and nonrepudiation

They only show that it was signed by a specific key, however

It’s cheaper to sign a checksum of the message rather than
the whole message

Cryptographic checksums are necessary to do this securely

Summary 34/36



Readings and References

Chapter 8.1.7, 8.2.1, 8.5.2 in Introduction to Computer

Security, by Goodrich and Tamassia.

Summary 35/36



Acknowledgments

Additional material and exercises have also been collected from
these sources:

1 Matthew Landis, 620—Fall 2003—Cryptographic Checksums

and Digital Signatures.

2 RFC1321 (MD5), www.ietf.org/rfc/rfc1321.txt

Summary 36/36

www.ietf.org/rfc/rfc1321.txt

	Introduction
	RSA Signature Scheme
	Elgamal Signature Scheme
	Cryptographic Hash Functions
	Birthday attacks
	Summary

