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Digital Signatures

In this lecture we are going to talk about
cryptographic hash functions (checksums) and
digital signatures .

We want to be able to
1 Detect tampering : is the message we received the same as the

message that was sent?
2 Authenticate : did the message come from who we think it

came from?
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Digital Signatures. . .

More specifically, we want to ensure:
1 Nonforgeability : Eve should not be able to create a message

that appears to come from Alice.
2 Nonmutability : Eve should not be able to take a valid

signature for one message from Alice, and apply it to another
one.

3 Nonrepudiation : Alice should not be able to claim she didn’t
sign a document that she did sign.
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Digital Signatures. . .

In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.
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Digital Signatures. . .

This works because for many public key ciphers

DSB (EPB
(M)) = M

EPB
(DSB (M)) = M

i.e. we can reverse the encryption/decryption operations.

That is, Bob can apply the decryption function to a message
with his private key SB , yielding the signature sig:

sig ← DSB (M)

Then, anyone else can apply the encryption function to sig to
get the message back. Only Bob (who has his secret key)
could have generated the signature:

EPB
(sig) = M
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Digital Signatures. . .

Bob Alice

M sig ← DSB (M) M, sig M
?
= EPB

(sig) Bob sent M?

SB PB
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RSA Encryption: Algorithm

Bob (Key generation):
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RSA Signature Scheme: Algorithm

Bob (Key generation): As before.
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RSA Signature Scheme: Algorithm

Bob (Key generation): As before.

PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.

Bob (sign a secret message M):
1 Compute S = Md mod n.
2 Send M , S to Alice.

Alice (verify signature S received from Bob):
1 Receive M , S from Alice.

2 Verify that M
?
= Se mod n.
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RSA Signature Scheme: Correctness

We have:
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RSA Signature Scheme: Correctness

We have:
PB = (e, n) is Bob’s RSA public key.
SB = (d , n) is Bob’ RSA private key.
S = Md mod n.
d = e−1 mod φ(n)⇒ de = 1 mod φ(n).

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that’s relatively prime to the integer

n > 0, and let k be any positive integer, then

xk mod n = xk mod φ(n) mod n

Alice wants to verify that M
?
= Se mod n.

Se mod n = Mde mod n

= Mde mod φ(n) mod n

= M1 mod n = M
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RSA signature: Nonforgeability

Nonforgeability : Eve should not be able to create a message
that appears to come from Alice.
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RSA signature: Nonforgeability

Nonforgeability : Eve should not be able to create a message
that appears to come from Alice.

To forge a message M from Alice, Eve would have to produce

Md mod n

without knowing Alice’s private key d .

This is equivalent to being able to break RSA encryption.
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RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.
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RSA signature: Nonmutability

Nonmutability : Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

RSA does not achieve nonmutability.

Assume Eve has two valid signatures from Alice, on two
messages M1 and M2:

S1 = Md
1 mod n

S2 = Md
2 mod n

Eve can then produce a new signature

S1 · S2 = (Md
1 mod n) · (Md

2 mod n)

= (M1 ·M2)
d mod n

This is a valid signature for the message M1 ·M2!

Not usually a problem since we normally sign hashes.
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Elgamal: Signature Algorithm

Alice (Key generation): As before.
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2 Compute the signature S = (a, b):

a = g k mod p
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1 Verify ya · ab mod p
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= gM mod p.
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Elgamal Signature Algorithm: Correctness

We have:

y = gx mod p

a = gk mod p

b = k−1(M − xa) mod (p − 1)

Show that ya · ab mod p = gM mod p.

yaab mod p = (gx mod p)a((gk mod p)(k−1(M − xa) mod (p − 1)) mo

= gxagkk−1(M−xa) mod (p−1) mod p

= gxag (M−xa) mod (p−1) mod p

= gxagM−xa mod p

= gxa+M−xa mod p

= gM mod p
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Elgamal Signature Algorithm: Security

We have:

y = gx mod p

a = gk mod p

b = k−1(M − xa) mod (p − 1)

k is random ⇒ b is random!

To the adversary, b looks completely random.

The adversary must compute k from a = gk mod p ⇔
compute discrete log!

If Alice reuses k ⇒ The adversary can compute the secret key.
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Cryptographic Hash Functions

Public key algorithms are too slow to sign large documents. A
better protocol is to use a one way hash function also known
as a cryptographic hash function (CHF).

CHFs are checksums or compression functions : they take an
arbitrary block of data and generate a unique, short,
fixed-size, bitstring.

✞ ☎

> echo ” h e l l o ” | sha1sum
f572d396 f a e9206628714 fb2ce00 f 72e94 f 2258 f −
> echo ” h e l l a ” | sha1sum
1519 ca327399f9d699a fb0f8a3b7e1ea9d1edd0c −
> echo ”can ’ t b e l i e v e i t ’ s not b u t t e r ! ” | sha1sum
34 e780e19b07b003b7c f1babba8e f7399b7f81dd −
✝ ✆
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Signature Protocol

1 Bob computes a one-way hash of his document.

hash ← h(M)

sig ← ESB (hash)

DPB
(sig)

?
= h(M)
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Signature Protocol

1 Bob computes a one-way hash of his document.

2 Bob encrypts the hash with his private key, thereby signing it.

3 Bob sends the encrypted hash and the document to Alice.

4 Alice decrypts the hash Bob sent him, and compares it against
a hash she computes herself of the document. If they are the
same, the signature is valid.
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Signature Protocol. . .

Bob Alice

M hash← h(M) S ← ESB (hash) M,S DPB
(S)

?
= h(M) Bob sent M?

SB PB

Advantage : the signature is short; defends against MITM
attack.
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Cryptographic Hash Functions. . .

CHFs should be
1 deterministic
2 one-way
3 collision-resistant

i.e., easy to compute, but hard to invert .

I.e.

given message M , it’s easy to compute y ← h(M);
given a value y it’s hard to compute an M such that
y = h(M).

This is what we mean by CHFs being one-way .
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Weak vs. Strong Collision Resistance

CHFs also have the property to be collision resistant .

Weak collision resistance :

Assume you have a message M with hash value h(M).
Then it should be hard to find a different message M ′ such
that h(M) = h(M ′).

Strong collision resistance :

It should be hard to find two different message M1 and M2

such that h(M1) = h(M2).

Strong collisions resistance is hard to prove.
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Merkle-Damgøard Construction

Hash functions are often built on a compression function
C (X ,Y ):

C
Y

X
length(X )=m

length(Y )=length(Y ′)=n

Y ′

X is (a piece of) the message we’re hashing.

Y and Y ′ is the hash value we’re computing.
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Merkle-Damg̊ard Construction. . .

C C CCC
v = d0

d1

M1 M2 M3 M4 M5

d2 d3
d5 = d

d4

For long messages M we break it into pieces M1, . . . ,Mk ,
each of size m.

Our initial hash value is an initialization vector v .

We then compress one Mi at a time, chaining it together on
the previous hash value.
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The Birthday Problem

Given a group of n people, what is the probability that two
share a birthday?

Examine the probability that no two share a birthday: (let Bi

be person i’s birthday)

n = 1 : 1
n = 2 : 364/365
n = 3 : probability that B3 differs from both B1 and B2 and
that none of the first two share a birthday: 363/365 ∗ 364/365
n = 4 :, probability that B4 differs from all of B1...3 and that
none of the first three share a birthday:
362/365 ∗ (363/365 ∗ 364/365)
and so on . . .
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The Birthday Problem

This generalizes to

365!

365n(365 − n)!

It takes only 23 people to give greater than .5 probability that
two people share a birthday in a domain with cardinality 365.

For a domain with cardinality c , .5 probability is reached with
approximately 1.2

√
c numbers.

So what does this have to do with checksums?
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The Birthday Problem. . .

Assume our hash function H has b-bit output.
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Assume our hash function H has b-bit output.

The number of possible hash values is 2b.

Attack:
1 Eve generates large number of messages m1,m2, . . ..
2 She computes their hash values H(m1),H(m2), . . ..
3 She waits for two messages mi and mj such that

H(mi) = H(mj).

Eve needs to generate ≈ 2b inputs to find a collision, right?

Wrong! By the birthday paradox, it is likely that two
messages will have the same hash value!

Security is ≈ 2b/2 not 2b.

Thus, a hash-function with 256-bit output has 128-bit security.
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Birthday Attacks

Little Billy wants to be the sole beneficiary of Grandma’s will

He prepares two message templates, like the one Charlie
made, one being a field trip permission slip, and the other
being a will in which Grandma bequeaths everything to her
sweet grandson.

Little Billy finds a pair of messages, one generated from each
template, with equal checksums

Little Billy has Grandma sign the field trip permission slip

Little Billy now has a signature that checks out against the
will he created

Profit!!
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Summary

Digital signatures make a message tamper-proof and give us
authentication and nonrepudiation

They only show that it was signed by a specific key, however

It’s cheaper to sign a checksum of the message rather than
the whole message

Cryptographic checksums are necessary to do this securely
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