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Digital Signatures

@ In this lecture we are going to talk about
cryptographic hash functions (checksums) and
digital signatures.
@ We want to be able to
@ Detect tampering: is the message we received the same as the
message that was sent?

@ Authenticate: did the message come from who we think it
came from?
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Digital Signatures. . .

@ More specifically, we want to ensure:

© Nonforgeability: Eve should not be able to create a message
that appears to come from Alice.

@ Nonmutability: Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
one.

© Nonrepudiation: Alice should not be able to claim she didn't
sign a document that she did sign.
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Digital Signatures. . .

@ In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.
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Digital Signatures. . .

@ In the non-digital world, Alice would sign the document. We
can do the same with digital signatures.

@ Alice encrypts her document M with her private key Sa,
thereby creating a signature Sajice(M).

@ Alice sends M and the signature Sajice(M) to Bob.

© Bob decrypts the document using Alice’s public key, thereby
verifying her signature.
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Digital Signatures. . .

@ This works because for many public key ciphers
Dsy(Epg(M)) = M
Epy(Dsz(M)) = M
i.e. we can reverse the encryption/decryption operations.

@ That is, Bob can apply the decryption function to a message
with his private key Sg, yielding the signature sig:

sig < Ds,(M)

@ Then, anyone else can apply the encryption function to sig to
get the message back. Only Bob (who has his secret key)
could have generated the signature:

EPB (Slg) = M
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RSA Signature Scheme

@ Alice encrypts her document M with her private key Sa,
thereby creating a signature Sajice(M).

@ Alice sends M and the signature Sajice(M) to Bob.

© Bob decrypts the document using Alice’s public key, thereby
verifying her signature.
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RSA Encryption: Algorithm

@ Bob (Key generation):
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RSA Encryption: Algorithm

@ Bob (Key generation):
© Generate two large random primes p and q.

@ Compute n = pq.
© Select a small odd integer e relatively prime with ¢(n).

© Compute ¢(n) = (p—1)(g — 1).
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RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
o Pg = (e, n) is Bob's RSA public key.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
o Pg = (e, n) is Bob's RSA public key.
o Sg = (d,n) is Bob" RSA private key.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
o Pg = (e, n) is Bob's RSA public key.
o Sg = (d,n) is Bob" RSA private key.
@ Bob (sign a secret message M):

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
s Pg = (e, n) is Bob’s RSA public key.
s Sg = (d,n) is Bob’ RSA private key.
@ Bob (sign a secret message M):
@ Compute S = M9 mod n.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
o Pg = (e, n) is Bob's RSA public key.
o Sg = (d,n) is Bob" RSA private key.
@ Bob (sign a secret message M):

@ Compute S = M9 mod n.
@ Send M, S to Alice.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
o Pg = (e, n) is Bob's RSA public key.
o Sg = (d,n) is Bob" RSA private key.
@ Bob (sign a secret message M):

@ Compute S = M9 mod n.
@ Send M, S to Alice.

@ Alice (verify signature S received from Bob):

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
s Pg = (e, n) is Bob’s RSA public key.
s Sg = (d,n) is Bob’ RSA private key.
@ Bob (sign a secret message M):
@ Compute S = M9 mod n.
@ Send M, S to Alice.
@ Alice (verify signature S received from Bob):
© Receive M, S from Alice.

RSA Signature Scheme 11/36



RSA Signature Scheme: Algorithm

@ Bob (Key generation): As before.
s Pg = (e, n) is Bob’s RSA public key.
s Sg = (d,n) is Bob’ RSA private key.
@ Bob (sign a secret message M):
@ Compute S = M9 mod n.
@ Send M, S to Alice.
@ Alice (verify signature S received from Bob):
© Receive M, S from Alice.
@ Verify that M <S¢ mod .

RSA Signature Scheme 11/36



RSA Signature Scheme: Correctness

@ We have:
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RSA Signature Scheme: Correctness

@ We have:

Pg = (e, n) is Bob's RSA public key.
Sg = (d, n) is Bob’ RSA private key.
S = M9 mod n.

d = e ! mod ¢(n) = de = 1 mod ¢(n).

¢ ¢ ¢ ¢
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RSA Signature Scheme: Correctness

@ We have:

Pg = (e, n) is Bob's RSA public key.
Sg = (d, n) is Bob’ RSA private key.
S = M9 mod n.

d = e ! mod ¢(n) = de = 1 mod ¢(n).

o
o
o
]

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that's relatively prime to the integer
n > 0, and let k be any positive integer, then

x¥ mod n = xkmMed ¢(n) mod n
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RSA Signature Scheme: Correctness

@ We have:

Pg = (e, n) is Bob's RSA public key.
Sg = (d, n) is Bob’ RSA private key.

S = M9 mod n.

d = e ! mod ¢(n) = de = 1 mod ¢(n).

o
o
o
]

Theorem (Corollary to Euler’s theorem)

Let x be any positive integer that's relatively prime to the integer
n > 0, and let k be any positive integer, then

k

x¥ mod n = xk mod

" mod n

@ Alice wants to verify that M ~ 5¢ mod n.

S modn = M% modn
— Mde mod ¢(n) mod n
= Mmodn=M
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RSA signature: Nonforgeability

@ Nonforgeability: Eve should not be able to create a message
that appears to come from Alice.
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RSA signature: Nonforgeability

@ Nonforgeability: Eve should not be able to create a message
that appears to come from Alice.

@ To forge a message M from Alice, Eve would have to produce
M9 mod n

without knowing Alice's private key d.
@ This is equivalent to being able to break RSA encryption.
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RSA signature: Nonmutability

@ Nonmutability: Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.
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RSA signature: Nonmutability

@ Nonmutability: Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

@ RSA does not achieve nonmutability.
@ Assume Eve has two valid signatures from Alice, on two
messages My and M:

Si = M modn
S, = M modn
@ Eve can then produce a new signature
S-S = (M mod n)-(M§ mod n)
(My - My)¥ mod n

This is a valid signature for the message M - M>!
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RSA signature: Nonmutability

@ Nonmutability: Eve should not be able to take a valid
signature for one message from Alice, and apply it to another
message.

@ RSA does not achieve nonmutability.
@ Assume Eve has two valid signatures from Alice, on two
messages My and M:
Si = M modn
S, = M modn
@ Eve can then produce a new signature
S-S = (M mod n)-(M§ mod n)
(My - My)¥ mod n
This is a valid signature for the message M - M>!

@ Not usually a problem since we normally sign hashes.
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Elgamal: Encryption Algorithm

@ Bob (Key generation):
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Elgamal: Encryption Algorithm

@ Bob (Key generation):
@ Pick a prime p.
@ Find a generator g for Z,.
© Pick a random number x between 1 and p — 2.
@ Compute y = g*¥ mod p.
o Pg=(p,g,y) is Bob’s RSA public key.
@ Sg = x is Bob" RSA private key.
@ Alice (encrypt and send a message M to Bob):
@ Get Bob's public key Ps = (p,g,y).
@ Pick a random number k between 1 and p — 2.
© Compute the ciphertext C = (a, b):

a = gkmodp
My* mod p

@ Bob (decrypt a message C = (a, b) received from Alice):
© Compute M = b(a*)~1 mod p.
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Elgamal: Signature Algorithm

o Alice (Key generation): As before.
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o Alice (Key generation): As before.
@ Pick a prime p.
@ Find a generator g for Z,.
© Pick a random number x between 1 and p — 2.
Q@ Compute y = g¥ mod p.
@ Pa=(p,g,y) is Alice’s RSA public key.
@ Sp = x is Alice’ RSA private key.
@ Alice (sign message M and send to Bob):
@ Pick a random number k.
@ Compute the signature S = (a, b):

a = gmodp
b = k}(M—xa)mod (p—1)

@ Bob (verify the signature S = (a, b) received from Alice):
@ Verify y? - 2’ mod p = g™ mod p.
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Elgamal Signature Algorithm: Correctness

@ We have:

g% mod p

g mod p

b = k(M —xa) mod (p— 1)

L <
1

@ Show that y? - a? mod p = g™ mod p.

y?a®modp = (g% mod p)?((gX mod p) k=1 (M — xa) mod (p — 1)) m
— gxagkk_l(M—xa) mod (p—1) mod p

gxag(M—xa) mod (p—1)

gxagM—xa mod p

gxa+M—xa mod p

mod p

= g"modp
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Elgamal Signature Algorithm: Security

@ We have:

= g¥modp
a = gk mod p
k(M — xa) mod (p — 1)

® k is random = b is random!
@ To the adversary, b looks completely random.

@ The adversary must compute k from a = gk mod p <
compute discrete log!

@ If Alice reuses k = The adversary can compute the secret key.
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Cryptographic Hash Functions

@ Public key algorithms are too slow to sign large documents. A
better protocol is to use a one way hash function also known
as a cryptographic hash function (CHF).

@ CHFs are checksums or compression functions: they take an
arbitrary block of data and generate a unique, short,
fixed-size, bitstring.

> echo "hello” | shalsum
f572d396fae9206628714fb2ce00f72e94f2258f —

> echo "hella” | shalsum
1519ca327399f9d699afb0f8a3b7eleaddleddlc —

> echo "can't believe it's not butter!”|shalsum
34e780e19b07b003b7cflbabba8ef7399b7f81dd —
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Signature Protocol

@ Bob computes a one-way hash of his document.

hash <+ h(M)
sig < Esg(hash)
?
Dpy(sig) L A(M)
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Signature Protocol

@ Bob computes a one-way hash of his document.
@ Bob encrypts the hash with his private key, thereby signing it.
© Bob sends the encrypted hash and the document to Alice.

@ Alice decrypts the hash Bob sent him, and compares it against
a hash she computes herself of the document. If they are the
same, the signature is valid.

hash <« h(M)
sig <« Esg(hash)
: ?

Dpy(sig) L A(M)
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Signature Protocol. . .

Bob Alice

v e

[MF——_ hash < h(M) »— S« Eg,(hash) (_ Dpy(S) < h(M) —Bob sent M?

:It: Pg

@ Advantage: the signature is short; defends against MITM
attack.
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Cryptographic Hash Functions. . .

@ CHFs should be
@ deterministic

@ one-way
© collision-resistant

i.e., easy to compute, but hard to invert.
o le.
@ given message M, it's easy to compute y < h(M);

¢ given a value y it's hard to compute an M such that
y = h(M).

This is what we mean by CHFs being one-way.

Cryptographic Hash Functions
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Weak vs. Strong Collision Resistance

@ CHFs also have the property to be collision resistant.
@ Weak collision resistance:

@ Assume you have a message M with hash value h(M).
@ Then it should be hard to find a different message M’ such
that h(M) = h(M").
@ Strong collision resistance:
@ It should be hard to find two different message M; and M,
such that h(My) = h(Ms).

@ Strong collisions resistance is hard to prove.
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Merkle-Damggard Construction

@ Hash functions are often built on a compression function

C(X,Y):
length(X)=m
X| length(Y)=length(Y”’)=n
C
Y—— L .y

@ X is (a piece of) the message we're hashing.

@ Y and Y’ is the hash value we're computing.
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Merkle-Damgard Construction. . .

v = dp—> ds =d

@ For long messages M we break it into pieces My, ..., M,
each of size m.

@ Our initial hash value is an initialization vector v.

@ We then compress one M; at a time, chaining it together on
the previous hash value.
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The Birthday Problem

@ Given a group of n people, what is the probability that two
share a birthday?

@ Examine the probability that no two share a birthday: (let B;
be person i's birthday)

e n=1:1
o n=2:364/365
@ n = 3: probability that B; differs from both B; and B, and

that none of the first two share a birthday: 363/365 x 364 /365
n =4 :, probability that B, differs from all of B;_ 3 and that
none of the first three share a birthday:

362/365 x (363/365 * 364 /365)

@ andsoon ...

<

Birthday attacks 29/36



The Birthday Problem

@ This generalizes to

365!
365"(365 — n)!
@ It takes only 23 people to give greater than .5 probability that

two people share a birthday in a domain with cardinality 365.

@ For a domain with cardinality ¢, .5 probability is reached with
approximately 1.2/c numbers.

@ So what does this have to do with checksums?
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The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

@ The number of possible hash values is 2°.

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

@ The number of possible hash values is 2°.
o Attack:

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

@ The number of possible hash values is 2°.
o Attack:
@ Eve generates large number of messages my, ma, . . ..

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

@ The number of possible hash values is 2°.
o Attack:

@ Eve generates large number of messages my, ma, . . ..
@ She computes their hash values H(my), H(ms), . . ..

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.

@ The number of possible hash values is 2°.
o Attack:

@ Eve generates large number of messages my, ma, . . ..

@ She computes their hash values H(my), H(ms), . . ..

© She waits for two messages m; and m; such that
H(m;) = H(m;).

Birthday attacks 31/36



The Birthday Problem. ..

@ Assume our hash function H has b-bit output.
@ The number of possible hash values is 2°.
o Attack:

@ Eve generates large number of messages my, ma, . . ..
@ She computes their hash values H(my), H(ms), . . ..

© She waits for two messages m; and m; such that

@ Eve needs to generate ~ 2° inputs to find a collision, right?

Birthday attacks 31/36



The Birthday Problem. ..

[

Assume our hash function H has b-bit output.

(]

The number of possible hash values is 2°.
Attack:

@ Eve generates large number of messages my, ma, . . ..
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© She waits for two messages m; and m; such that
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Eve needs to generate ~ 2 inputs to find a collision, right?
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The Birthday Problem. ..

[

Assume our hash function H has b-bit output.

The number of possible hash values is 2°.
Attack:

@ Eve generates large number of messages my, ma, . . ..

@ She computes their hash values H(my), H(ms), . . ..

© She waits for two messages m; and m; such that
H(m;) = H(m;).

Eve needs to generate ~ 2 inputs to find a collision, right?

¢ ©

(]

Wrong! By the birthday paradox, it is likely that two
messages will have the same hash value!

Security is &~ 2b/2 not 2b.
Thus, a hash-function with 256-bit output has 128-bit security.

(]

[
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Birthday Attacks

o Little Billy wants to be the sole beneficiary of Grandma'’s will

@ He prepares two message templates, like the one Charlie
made, one being a field trip permission slip, and the other
being a will in which Grandma bequeaths everything to her
sweet grandson.

o Little Billy finds a pair of messages, one generated from each
template, with equal checksums

o Little Billy has Grandma sign the field trip permission slip

o Little Billy now has a signature that checks out against the
will he created

o Profit!!
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Summary

@ Digital signatures make a message tamper-proof and give us
authentication and nonrepudiation
@ They only show that it was signed by a specific key, however
@ It's cheaper to sign a checksum of the message rather than
the whole message
@ Cryptographic checksums are necessary to do this securely

34/36
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