
University of Arizona, Department of Computer Science

CSc 520 — Assignment 4 — Due noon, Wed, Apr 6 — 15%

Christian Collberg
March 23, 2005

1 Introduction

Your task is to write an interpreter and a garbage collector for a small MODULA-2-like language called
Luca. You can choose between mark-and-sweep, copying collection, and generational collection.

The Luca compiler, code for parsing S-expressions, and some simple test-cases can be downloaded from the
class web page: http://www.cs.arizona.edu/~collberg/Teaching/520/2005/Assignments.

This assignment can be done individually or in a team of 2 students.

Make sure to hand in a README file describing, in detail, your implementation.

For this assignment efficiency of the garbage collector counts!

2 The Luca Language

Here’s is a Luca program list.luc that creates a list of integers and prints it out:

PROGRAM list;

TYPE T = REF R;

TYPE R = RECORD[a:INTEGER; next:T];

VAR first : T;

VAR last : T;

VAR x : T;

VAR i : INTEGER;

BEGIN

first := NEW T;

first^.a := 0;

first^.next := NULL;

last := first;

FOR i := 1 TO 5 DO

x := NEW T;

x^.a := i;

x^.next := NULL;

last^.next := x;

last := x;

ENDFOR;

1

x := first^.next;

WHILE x # NULL DO

WRITE x^.a;

WRITELN;

x := x^.next;

ENDDO;

END.

The Luca language supports many data types (including arrays, records, classes and reals) and control
structures and procedures/methods. Your interpreter, however, only needs to support

• INTEGER, BOOLEAN, records, and reference (pointer) types.

• Assignment statements and the IF, WHILE, REPEAT, LOOP, EXIT, and FOR control statements.

• The built-in function NEW.

• Integer constants and the built-in constant NULL.

• Integer and boolean expressions as well as the field and pointer dereferencing operators (. and ^).

This will be enough to construct elaborate heap-structures that our garbage collector can work on. I.e. there
will be no need for you to handle procedures, classes, reals, and arrays.

A complete grammar of Luca is given in Appendix A.

3 The Interpreter

A Luca compiler that generates stack virtual machine code will be given to you. You should write a
C-program lexec.c that is called like this:

$ luca_lex list.luc | luca_parse | luca_sem -agvm | luca_AST2tree -agvm | \

luca_tree2vm > list.vm

$ lexec list.vm

1

2

3

4

5

The first command compiles the program list.luc into a virtual machine code list.vm. The second runs
your interpreter on this virtual machine code. All of the phases of the compiler pipeline read and generate
S-expressions. The -h options lists other arguments to the different phases.

Your program should take two optional arguments:

-h size: Set the total heap size to size.

2

-t Trace all heap operations. For every NEW operation print (to stderr)

NEW: allocated X bytes for type T.

Every time a garbage collection is triggered print

GC: START USED=... FREE=...

GC: END USED=... FREE... WALL=... CPU=...

where FREE and USED is the amount of heap memory (in bytes) available and used and where WALL
and CPU is the time (in seconds) used by the garbage collector as computed by this code:

#include<sys/resource.h>

#include<sys/time.h>

double GetTime () {

struct timeval Time;

double cpu, wall;

struct rusage Resources;

getrusage(RUSAGE_SELF, &Resources);

Time = Resources.ru_utime;

cpu = (double)Time.tv_sec +

(double)Time.tv_usec/1000000.0;

gettimeofday(&Time, NULL);

wall = (double)Time.tv_sec +

(double)Time.tv_usec/1000000.0;

}

Note:

• Don’t worry too much about the efficiency of your interpreter. Do worry about the efficiency of the
garbage collector.

• The compiler (in particular the parser) is flaky.

• You should trigger a garbage collection whenever a NEW is called and the heap has not enough free
memory to honor the request.

• Don’t grow the heap.

• The default heap size shall be 1M bytes.

• Pointers and INTEGERs are 32-bit quantities.

• The virtual machine code is word addressed.

• We will test the interpreter on a Linux/x86 system.

3

4 Virtual Machine Code

From this Luca program

PROGRAM min;

TYPE T = REF INTEGER;

VAR x : T;

BEGIN

x := NEW T;

WRITE x^;

END.

the Luca compiler generates this virtual machine code:

(

(

(1 TypeSy INTEGER 0 0 BasicType 1)

(2 TypeSy REAL 0 0 BasicType 1)

(3 TypeSy CHAR 0 0 BasicType 1)

(4 TypeSy STRING 0 0 BasicType 0)

(5 TypeSy BOOLEAN 0 0 EnumType

(6 7)

1)

(6 EnumSy TRUE 0 0 5 0 1)

(7 EnumSy FALSE 0 0 5 0 0)

(8 TypeSy $NOTYPE 0 0 BasicType 0)

(9 TempSy $NOSYMBOL 0 0 8 0 0)

(10 TypeSy $ADDRESS 0 0 BasicType 1)

(11 TypeSy OBJECT 0 0 ClassType

()

8 0 0 0)

(12 ConstSy NIL 0 0 11 0 0)

(13 ConstSy NULL 0 0 10 0 0)

(14 ProcedureSy $MAIN 8 0

()

(16)

0 0)

(15 TypeSy T 3 0 RefType 1 0)

(16 VariableSy x 4 0 15 0 0)

)

(

(Info 8 7 8 10 0 14 16)

(ProcBegin 8 14 0 1 9 0 0 $MAIN)

(PushAddr 6 16 x)

(NEW 6 15)

(Store 6 15)

(PushAddr 7 16 x)

(RefOf 7 15)

(Load 7 1)

4

(Write 7 1)

(ProcEnd 8 14 $MAIN)

)

)

The vm code is in an S-expression format. The first part is the symbol table, the second part the code
section.

5 Submission and Assessment

The deadline for this assignment is noon, Wed, Apr 6. You should submit the assignment (a text-file con-
taining the function definitions) electronically using the Unix command pturnin cs520.4 lexec.c READMEq.
This assignment is worth 15% of your final grade.

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or TA.

A The Luca Syntax

Luca has constant and variable declarations, integer arithmetic, assignment statements, READ, WRITE,
and WRITELN statements. Only integers and characters can be read, strings can also be written. Identifiers
have to be declared before they are used. Identifiers cannot be redeclared. There are three (incompatible)
built-in types, INTEGER, BOOLEAN and CHAR. The identifiers TRUE and FALSE are predeclared in the language.

INTEGERS and REALS are 32-bit quantities.

〈program〉 ::= ‘PROGRAM’ 〈ident〉 ‘;’ 〈decl list〉 〈block〉 ‘.’

〈block〉 ::= ‘BEGIN’ 〈stat seq〉 ‘END’

〈decl list〉 ::= { 〈declaration〉 ‘;’ }

〈declaration〉 ::= ‘CONST’ 〈ident〉 ‘:’ 〈ident〉 ‘=’ 〈expression〉
‘VAR’ 〈ident〉 ‘:’ 〈ident〉

〈expression〉 ::= 〈expression〉 〈bin operator〉 〈expression〉 |
〈unary operator〉 〈expression〉 |
‘(’ 〈expression〉 ‘)’ | 〈integer literal〉 | 〈char literal〉 | 〈designator〉

〈designator〉 ::= 〈ident〉

〈bin operator〉 ::= ‘+’ | ‘−’ | ‘∗’ | ‘/’ | ‘%’

〈unary operator〉 ::= ‘−’

〈stat seq〉 ::= { 〈statement〉 ‘;’ }

〈statement〉 ::= 〈designator〉 ‘:=’ 〈expression〉
‘WRITE’ 〈expression〉 | ‘WRITELN’ |
‘READ’ 〈designator〉

Luca has IF, IF-ELSE, LOOP, EXIT, REPEAT, FOR, and WHILE statements. EXIT statements can only
occur within LOOP statements. The expression in an IF, IF-ELSE, REPEAT, or WHILE statement must
be of boolean type.

5

〈bin operator〉 ::= ‘AND’ | ‘OR’ | ‘<’ | ‘<=’ | ‘=’ |‘#’ | ‘>=’ |‘>’

〈unary operator〉 ::= ‘NOT’

〈statement〉 ::= ‘IF’ 〈expression〉 ‘THEN’ 〈stat seq〉 ‘ENDIF’|
‘IF’ 〈expression〉 ‘THEN’ 〈stat seq〉 ‘ELSE’ 〈stat seq〉 ‘ENDIF’ |
‘WHILE’ 〈expression〉 ‘DO’ 〈stat seq〉 ‘ENDDO’ |
‘REPEAT’ 〈stat seq〉 ‘UNTIL’ 〈expression〉 |
‘LOOP’ 〈stat seq〉 ‘ENDLOOP’ |
‘EXIT’ |
‘FOR’ 〈ident〉 ‘:=’ 〈expression〉 ‘TO’ 〈expression〉 [‘BY’ 〈const expr〉] ‘DO’ 〈stat seq〉 ‘ENDFOR’

The FOR-loop BY-expression must be a compile-time constant expression. A Luca FOR-loop

FOR i := e1 TO e2 BY e3 DO

S

ENDFOR

is compiled into code that’s equivalent to

i := e1;

T1 := e2;

T2 := e3;

IF T2 >= 0 THEN

WHILE i <= T1 DO

S;

i := i + T2;

ENDDO;

ELSE

WHILE i >= T1 DO

S;

i := i + T2;

ENDDO;

ENDIF

Luca does not allow mixed arithmetic, i.e. there is no implicit conversion of integers to reals in an expression.
For example, if I is an integer and R is real, then pR:=I+Rq is illegal. Luca instead supports two explicit
conversion operators, TRUNC and FLOAT. TRUNC R returns the integer part of R, and FLOAT I returns a real
number representation of I. Note also that % (remainder) is not defined on real numbers.

6

We add two operators TRUNC and FLOAT:

〈unary operator〉 ::= ‘TRUNC’ | ‘FLOAT’

Luca has arrays, record, and pointer types.

Assignment is defined for scalars only, not for variables of structured type. In other words, the assignment
pA:=Bq is illegal if A or B are records or arrays. READ and WRITE are only defined for scalar values
(integers, reals, and characters).

The element count of an array declaration must be a constant integer expression. Arrays are indexed from 0;
that is, an array declared as pARRAY 100 OF INTEGERq has the index range [0..99]. It is a checked run-time
error to go outside these index bounds.

Here are the extensions to the concrete syntax:

〈declaration〉 ::= ‘TYPE’ 〈ident〉 ‘=’ ‘ARRAY’ 〈expression〉 ‘OF’ 〈ident〉
‘TYPE’ 〈ident〉 ‘=’ ‘RECORD’ ‘[’ { 〈field〉 } ‘]’
‘TYPE’ 〈ident〉 ‘=’ ‘REF’ 〈ident〉

〈field〉 ::= 〈ident〉 ‘:’ 〈ident〉 ‘;’

〈designator〉 ::= 〈ident〉 { 〈designator’ 〉 }

〈designator’ 〉 ::= ‘[’ 〈expression〉 ‘]’ 〈designator’ 〉 | ‘.’ 〈ident〉 〈designator’ 〉 | ‘^’ 〈designator’ 〉

〈unary operator〉 ::= ‘NEW’ 〈ident〉

The NEW operator takes a reference type as parameter and returns a new dynamic variable as result. The ^

operator dereferences a pointer.

Luca has non-nested procedures. There is no limit to the number of arguments a procedure may take.
Value parameters (including structured types such as arrays and records!) should be passed by value, VAR
parameters by reference. Procedures can be recursive.

〈declaration〉 ::= ‘PROCEDURE’ 〈ident〉 ‘(’ [〈formal list〉] ‘)’ 〈decl list〉 〈block〉 ‘;’

〈formal list〉 ::= 〈formal param〉 { ‘;’ 〈formal param〉 }

〈formal param〉 ::= [‘VAR’] 〈ident〉 ‘:’ 〈ident〉

〈actual list〉 ::= 〈expression〉 { ‘,’ 〈expression〉 }

〈statement〉 ::= 〈ident〉 ‘(’ [〈actual list〉] ‘)’

〈field〉 ::= 〈ident〉 ‘:’ 〈ident〉 ‘;’

B Virtual Machine Code

Here is a description of the Luca virtual machine, lvm. Note that some of this information does not pertain
to this assignment, since you are not required to handle procedures, arrays, etc.

• lvm is a word-addressed machine. Words are 32 bits wide. The size of all basic types (integers, reals,
booleans, and chars) is one word.

7

• lvm is a stack machine. Conceptually, there is just one stack and it is used both for parameter passing
and for expression evaluation. An implementation may – for efficiency or convenience – use several
stacks. For example, in a three stack lvm implementation one stack can be used to store activation
records, one can be used for integer arithmetic and one can be used for real arithmetic.

• Execution begins at the (parameterless) procedure named $MAIN.

• Large value parameters are passed by reference. It is the responsibility of the called procedure to make
a local copy of the parameter. For example, if procedure P passes an array A by value to procedure Q,
P actually pushes the address of A on the stack. Before execution continues at the body of Q, a local
copy of A is stored in Q’s activation record. The body of Q accesses this copy. A special lvm instruction
Copy is inserted by the front end to deal with this case.

• When a Call instruction is encountered the arguments to the procedure are on the stack, with the
first argument on the top. In other words, arguments are pushed in the reverse order.

Instruction Stack

(Info Pos Major Minor Instrs Globals Main Symbols) [] ⇒ []
Information about the lvm file. Always the first instruction.

Major: The major version number.

Minor: The minor version number.

Instrs: The number of instructions in the file.

Globals: The amount of memory that should be allocated for global variables.

Main: The symbol number of the $MAIN procedure.

Symbols: The number of declared symbols.

(ProcBegin Pos SyNo FormalCount LocalCount Type

FormalSize LocalSize Name)

[] ⇒ []

The beginning of a procedure.

SyNo: The symbol number of the procedure.

FormalCount: The number of formal parameters.

LocalCount: The number of local variables.

Type: For future use.

FormalSize: The size of formal parameters.

LocalSize: The size of local variables.

Name: The name of the procedure.

(ProcEnd Pos SyNo Name) [] ⇒ []
The end of the procedure.

8

Instruction Stack

(IndexOf Pos ArrayNo Name) [A, I] ⇒ [A + I ∗ ElmtSz]
Compute the address of an array element. The address of the array and the index
value are on the top of the stack. The address should be incremented by I ∗ ElmtSz,
where ElmtSz can be found from the array declaration. If I is not within the array’s
bounds, a fatal error should be generated.

ArrayNo: The symbol number of the array.

(FieldOf Pos FieldNo Name) [R] ⇒ [R + FieldOffset]
Compute the address of a field of a record. The address of the record is on the top of
the stack. The address should be incremented by FieldOffset, the offset of the field
within the record.

FieldNo: The symbol number of the field.

(RefOf Pos Type) [L] ⇒ [R]
Push the value R stored at address L onto the stack. Note that this is essentially
equivalent of the Load instruction, but generated only from the pointer dereferencing
operator.
(PushAddr Pos SyNo Name) [] ⇒ [addr(SyNo)]
Push the address of the local or global variable or formal parameter whose symbol
number is SyNo.
(PushImm Pos Type Val) [] ⇒ [Val]
Push a literal value. Pushing a string means pushing its address. For other types,
the value of the constant is pushed.
(Store Pos Type) [L, R] ⇒ []
Store value R at address L.
(Load Pos Type) [L] ⇒ [R]
Push the value R stored at address L onto the stack.
(Copy Pos Type Size) [L, R] ⇒ []
Copy Size number of words from address L to address R. Currently, the front-end
only generates this instruction to make local copies of large value formal parameters.
(BinExpr Pos Op Type) [L,R] ⇒ [L Op R]
Integer or real arithmetic. Type is the symbol number of the integer or real standard
type.
(UnaryExpr Pos Op Type) [L,R] ⇒ [Op L]
Integer or real unary arithmetic. Op is TRUNC, FLOAT, or - (unary minus).
(Write Pos Type) [L] ⇒ []
Write L.
(NEW Pos Type) [] ⇒ [R]
Generate a new dynamic variable of type Type and push its address on the stack.

9

Instruction Stack

(PushNull Pos Type) [] ⇒ [0]
Push NULL (0) on the stack.
(WriteLn Pos) [] ⇒ []
Write a newline character.
(Read Pos Type) [L] ⇒ []
Read a value and store at address L.
(ProcCall Pos ProcNo Name) [] ⇒ []
Call the procedure whose symbol number is ProcNo. The arguments to the procedure
are on the stack, with the first argument on the top. If an argument is passed by
reference it’s address is pushed, otherwise its value. Large value parameters are also
passed by reference and the called procedure is responsible for making a local copy.
(Branch Pos Op Type Offset) [L,R] ⇒ []
If L Op R then goto PC+Offset, where PC is the number of the current instruction.
Only integers, reals, characters, and booleans can be compared.
(Goto Pos Offset) [] ⇒ []
Goto PC+Offset.

B.1 The Symbol Tables

The format of each symbol is

(number kind name position level ...)

where . . . represents information which is specific to each symbol kind. number is a unique number used to
identify each symbol. kind describes what type of symbol we’re dealing with, one of VariableSy, ConstSy,
EnumSy, FormalSy, FieldSy, ProcedureSy and TypeSy. name is the name of the symbol. level is 0 for global
symbols and 1 for symbols declared within procedures.

The information specific to each symbol is given below. Attributes in italic font are standard for all symbols.
Attributes in bold font are atoms describing the symbol kind. Attributes in typewriter font are specific
to a particular symbol.

(number VariableSy name pos level type size offset)
This entry represents a declared variable. type is the symbol number of the type of the variable. size
and offset are the size (in bytes) and the address of the variable. For the purposes of this assignment
these can be set to 0.

(number ConstSy name pos level type value)
This entry represents the value of a constant declaration. For integers, floats, and characters the value
is simply the obvious textual representation. For booleans it is the atom TRUE or FALSE.

(number EnumSy name pos level type size value)
This is only used for BOOLEAN types since this version of Luca does not allow the declaration of
enumeration types.

(number FormalSy name pos level type size copy offset formalNo mode)
This represents a formal parameter of a procedure. formalNo is the number of the formal, where
the first parameter has the number 1. size and offset can be set to 0. copy should be set to 9
($NOSYMBOL). mode is one of VAL and VAR.

10

(number FieldSy name pos level type size offset parent)
This represents a field in a record. type is the symbol number of the type of the symbol. size and
offset can be set to 0. parent is the symbol number of the record type itself.

(number ProcedureSy name pos level formals locals localSize formalSize)
This represents a procedure declaration. formals is a list (for example, "(12 13 14)") of the symbol
numbers of the formal parameters. locals is a list of the symbol numbers of the local variables.
localSize and formalSize can be set to 0.

(number TypeSy name pos level BasicType size)
This represents a basic type such as integer or real. size can be set to 0.

(number TypeSy name pos level ArrayType count type size)
This represents an array type. count is the number of elements of the array. type is the symbol
number of the element type. size can be set to 0.

(number TypeSy name pos level RecordType fields size)
This represents a record type. fields is the list of symbol numbers of the fields of the record. size

can be set to 0.

(number TypeSy name pos level RefType referent size)
This represents a reference (pointer) type. Where referent is the type pointed to.

(number TypeSy name pos level EnumType size)
This represents an enumeration type type. This version of Luca doesn’t have declarations of enumer-
ation types so the only place where this symbol occurs is in the declaration of the standard boolean
type. size can be set to 0.

Some symbols are predeclared by the compiler:

(1 TypeSy INTEGER 0 0 BasicType)

(2 TypeSy REAL 0 0 BasicType)

(3 TypeSy CHAR 0 0 BasicType)

(4 TypeSy STRING 0 0 BasicType)

(5 TypeSy BOOLEAN 0 0 EnumType)

(6 EnumSy TRUE 0 0 5 0 1)

(7 EnumSy FALSE 0 0 5 0 0)

(8 TypeSy $NOTYPE 0 0 BasicType)

(9 TempSy $NOSYMBOL 0 0 8 0 0)

(10 TypeSy $ADDRESS 0 0 BasicType)

(11 ProcedureSy $MAIN 7 0 () () 0 0)

Here is an example of the output from luca sem for a simple program:

> cat t.gus

PROGRAM P;

VAR X : BOOLEAN;

TYPE A = ARRAY 10 OF CHAR;

TYPE R = RECORD [x:INTEGER];

CONST C : INTEGER = 10;

PROCEDURE P (VAR x : REAL; y: R);

11

BEGIN END;

BEGIN

END.

> luca_lex t.gus | luca_parse | luca_sem

(

(

(12 VariableSy X 2 0 5 1 0)

(13 TypeSy A 3 0 ArrayType 10 3 10)

(14 TypeSy R 4 0 RecordType (15) 4)

(15 FieldSy x 4 0 1 4 0 14)

(16 ConstSy C 5 0 1 4 10)

(17 ProcedureSy P 7 0 (18 19) () 0 8)

(18 FormalSy x 6 1 2 4 9 0 1 VAR)

(19 FormalSy y 6 1 14 4 9 4 2 VAL)

)

(PROGRAM P 10 ...)

)

Note that this representation of the symbol table allows forward references. For example, symbol 14 (the
record type R) is given before the declaration of the field 15 which it references. This is acceptable, but not
required, behavior.

12

