
520—Spring 2005—1

CSc 520

Principles of Programming
Languages
1: Introduction

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—1

What’s a Programming Language?

[2]

520—Spring 2005—1

What’s a Language???

A formal language is a notation for precisely
communicating ideas.

By formal we mean that we know exactly which
“sentences” belong to the language and that every
sentence has a well-defined meaning.

A language is defined by specifying its syntax and
semantics .

The syntax describes how words can be formed into
sentences. The semantics describes what those
sentences mean.

[3] 520—Spring 2005—1

Example Languages

English is a natural , not a formal language. The
sentence

Many missiles have many warheads.

has multiple possible meanings.

Programming languages: FORTRAN, LISP, Java,
C++,. . .
Text processing languages: LATEX, troff,. . .

\begin{slide}{Example Languages}

\begin{itemize}

\item English is a \highlightbox{natural}, not a formal

language. The sentence

\end{itemize}

\end{slide}

Specification languages: VDM, Z, OBJ,. . .

[4]

520—Spring 2005—1

Programming Language Design

[5] 520—Spring 2005—1

Programming Language Design

Programming language design has a long history.

The first modern language (The “Plankalkül”) was
designed by Konrad Zuse in the 30s and 40s.

The Language List
(http://wuarchive.wustl.edu/doc/misc/lang-list.txt and
http://cui.unige.ch/langlist) now contains some 2000
entries.

[6]

520—Spring 2005—1

Programming Language Design. . .

Languages are used for a number of applications:
Programming (of course),
Robot control,
Specification (of compilers, safety-critical software
systems, etc.),
Video game scripting,
Database access,
Typesetting, etc.

[7] 520—Spring 2005—1

Programming Language Design. . .

Programming language design is a lot of fun. Lots of
people have felt the urge to design their own language.

Programming language design is hard. Most language
designs are horrible because:

Most people don’t know enough languages to know
what is a good one and a bad one.

Most people don’t know about the principles of
language design.

Most people don’t know enough about compiler
design.
Most people have no taste .

[8]

http://wuarchive.wustl.edu/doc/misc/lang-list.txt
http://cui.unige.ch/langlist

520—Spring 2005—1

Programming Language Design. . .

Programming language design is a lot of fun. Lots of
people have felt the urge to design their own language.

Programming language design is hard. Most language
designs are horrible because:

Most people don’t know enough languages to know
what is a good one and a bad one.

Most people don’t know about the principles of
language design.

Most people don’t know enough about compiler
design.
Most people have no taste .

[8] 520—Spring 2005—1

Programming Language Design. . .

Programming language design is a lot of fun. Lots of
people have felt the urge to design their own language.

Programming language design is hard. Most language
designs are horrible because:

Most people don’t know enough languages to know
what is a good one and a bad one.

Most people don’t know about the principles of
language design.

Most people don’t know enough about compiler
design.

Most people have no taste .

[8]

520—Spring 2005—1

Programming Language Design. . .

Programming language design is a lot of fun. Lots of
people have felt the urge to design their own language.

Programming language design is hard. Most language
designs are horrible because:

Most people don’t know enough languages to know
what is a good one and a bad one.

Most people don’t know about the principles of
language design.

Most people don’t know enough about compiler
design.
Most people have no taste .

[8] 520—Spring 2005—1

Goals of Programming Language Design

These are some of the principles language designers have
employed:

1. Simple

2. Expressive

3. Well-defined syntactic/semantic description

4. Reliable/safe

5. Easy to translate

6. Efficient object code

7. Orthogonal

8. All language objects should be first class

[9]

520—Spring 2005—1

Goals of Programming Language Design. . .

9. Transparent data types

10. Machine independence and portability

11. Verifiability

12. Consistency with familiar notations

13. Uniformity

14. Extensibility

15. Supports programming-in-the-large

16. Supports information hiding

[10] 520—Spring 2005—1

Goals of Programming Language Design. . .

Not all principles can/should be applied everywhere in
every language.

Not all principles will apply to every type of language.

Some principles may have made sense at some point in
time, but don’t anymore.

[11]

520—Spring 2005—1

Compilers and Languages

[12] 520—Spring 2005—1

Compilers and Languages

The history of compiler design and language design go
hand in hand:

The design of new language features have prompted
new compiler technology,
New compiler technology has allowed new
languages features.

There is a constant struggle between the programming
language user (“Please add this feature!”), the
language designer (“How can I incorporate the new
feature with the existing ones?”), and the compiler
writer (“No more features!”).

[13]

520—Spring 2005—1

Compilers and Languages. . .

Many successful languages have been designed
concurrently with a compiler for the language.

In contrast, many unsuccessful languages have been
designed by a committee, without much input from
compiler writers.

It is important for the language designer to be aware of
state-of-the-art compiler technology.

It is important for the compiler designer (particularly, the
compiler tool designer) to be aware of the requirements
of modern languages.

[14] 520—Spring 2005—1

History of Procedural Languages

Modula−2
(Wirth, 78)

(Xerox PARC, 77)
Mesa

Modula
(Wirth, 77)

(US DoD 83)

Ada83

Modula−3
(DEC−SRC,88)

Oberon
(Wirth, 88,91) (US DoD 90)

Ada90 C++
(Stroustrup,86)

Pascal
(Wirth, 70)

(Wirth&Apple, 85)

Object Pascal

(IBM, 54−57)
FORTRAN

PL/I
(IBM, 64)

C
(Ritchie, 72)

Algol68

Algol60

Simula67

[15]

520—Spring 2005—1

Algol60 introduced structured
programming.

Simula67 introduced
object-oriented programming.

Mesa introduced modules.

FORTRAN still rules!

[16] 520—Spring 2005—1

Goals of Language Design

[17]

520—Spring 2005—1

Simplicity

It should be possible to learn the entire language.

The language should have a small set of basic
constructs.

It should be easy for a user to figure out what it means
to combine different language elements.

A language-rich language is not necessarily a good
one:
1. Every feature has to be implemented by the compiler

writer ⇒ higher risk of compiler bugs.
2. Every feature has to be specified in the language

design document ⇒ higher risk of design flaws and
omissions.

3. Features often interact ⇒ it may be impossible to
learn only a small part of the language.

[18] 520—Spring 2005—1

Expressiveness

The language shouldn’t be so simple that it becomes
difficult or impossible to write real programs in it.

Pascal has very simple procedures for IO: There is a
read-statement and a write-statement:

var x:integer;
read x;
write x+1;

But, there is no way to catch erroneous input! If the
user entered hello! when the program expected to read
an integer, the program will just fail.

[19]

520—Spring 2005—1

Well-defined description

Lexical structure (what identifiers/numbers look like) is
easy to define.

Syntactic structure is easy to define.

Semantics is hard to define for reasonable size
languages. Often done informally or in “semi-formal”
English.

Type equivalence was left out of Pascal definition: some
implementations used name equivalence some
structural equivalence some declaration equivalence.

[20] 520—Spring 2005—1

Well-defined description. . .

TYPE T1 = RECORD a:CHAR; b:REAL END;

TYPE T2 = RECORD a:CHAR; b:REAL END;

VAR x1 : T1;

VAR x2 : T2;

VAR x3,x4: RECORD a:CHAR; b:REAL END;

BEGIN

x1 := x2; (* OK, or not? *)

x3 := x4; (* OK, or not? *)

END

name-equivalence: both assignments are illegal.

declaration-equivalence: only 2nd assignment is legal.

structural type equivalence: both assignments are legal.

[21]

520—Spring 2005—1

Well-defined description. . .

TYPE Shape = OBJECT
METHOD draw (); · · ·
METHOD move (X,Y:REAL); · · ·

END;
TYPE Cowboy = OBJECT

METHOD draw (); · · ·
METHOD move (X,Y:REAL); · · ·

END;
VAR s:S; c:C;
BEGIN s := c; (* OK? *) END

In Modula-3 (which uses structural equivalence) s and
c are compatible! In Object-Pascal (which uses name
equivalence) they are not.

[22] 520—Spring 2005—1

Well-defined description. . .

Some languages have a strict order of evaluation within
an expression, others leave it up to the implementation:

x := f(a) + b;

If f modifies b then the order matters.

Java has a fixed order of evaluation.

C leaves order of evaluation up to the implementation.

[23]

520—Spring 2005—1

Well-defined description. . .

FORTRAN requires that parenthesis be honored:
(5.0 ∗ x) ∗ (6.0 ∗ y) can’t be evaluated as (30.0 ∗ x ∗ y).

Different orders of evaluation can yield different results.

(x ∗ 0.00000001) ∗ 10000000000.0

may evaluate differently then

(x ∗ 1000.0)

[24] 520—Spring 2005—1

Reliability/Safety

What happens when you leave out a new-line at the
end of a Makefile:

x.o: x.c

cc -c x.c # Last line of file; No end of line here!

make ignores the rule! (At least some implementations.)

make is probably the worst language design known to
man.

OK, I lie. I forgot about XML. And C++.

[25]

520—Spring 2005—1

Reliability/Safety. . .

In 1990 AT&T’s long distance service fails for nine hours
due to a wrong break statement in a C program.

switch (e) {
0 :
1 : S1;

break;
2 : S2; ⇐ Really meant to fall-through here?!?!

3 : S3;
break;

}

C’s design allows several cases to share the same
statement (as 0 and 1 do above).

[26] 520—Spring 2005—1

Reliability/Safety. . .

Pascal achieves the same goal without C’s safety
problem:

case (e) of
1,3 : S1;
4..9 : S2;
99 : S3;

end

[27]

520—Spring 2005—1

Fast Translation

Important in the old days when
Computers were slow.
Languages had no module systems ⇒ programs
were huge and monolithic.

Today programs are enormous (several million LOC)
but modular. Most important is that modules can be
compiled independently; speed of compilation of
individual modules is not so important.

[28] 520—Spring 2005—1

Efficient Object Code

Important in the old days when computers were slow.

Sometimes matters today also, but programmer
productivity is usually more important:

Many programs which were previously written in C
for efficiency are now written in Perl for portability
and because it requires less programming effort.

Also depends on what the target application of the
language is: FORTRAN is used for huge numerical
programs (weather prediction, for example). The
generated code must be fast.

[29]

520—Spring 2005—1

Orthogonality

Orthogonality means that features can be used in
any combination, that the combinations all make
sense, and that the meaning of a given feature is
consistent, regardless of the other features of the
language.

[Scott, p. 256]

Pascal: functions can return integers, reals, etc. but
cannot return arrays or records.

Modula-2: integers, reals, etc. can be compared (with
<, <=, etc.), but strings cannot.

[30] 520—Spring 2005—1

Orthogonality. . .

Orthogonality can often be a red herring. Completely
orthogonal languages (Algol 68, for example) can be so
complex that no-one can implement them, or want to
use them. Many combinations of features will be
uninteresting to the average user.

[31]

520—Spring 2005—1

Orthogonality: Order of Declaration

Pascal has a completely fixed order of declaration:
Labels, Constants, Types, Variables, and then
Procedures. (Pascal is known as a
B&D (Bondage-&-Discipline) Language.)

Other languages are more forgiving, but still require
Declaration-Before-Use, i.e. a name must be declared
before it is referenced.

Other languages, still, allow a completely free order of
declaration. This allows the programmer to write the
declarations in the most natural order, but makes things
more difficult for the compiler writer (Surprise!).

[32] 520—Spring 2005—1

Orthogonality: Order of Declaration. . .

Declaration-Before-Use
(* This is illegal: *)
procedure bar (); begin foo() end;
procedure foo (); begin bar() end;

foo is called before it is declared.

In a strict declaration-before-use language it’s
impossible to declare mutually recursive procedures,
like foo & bar above.

In many dialects of Pascal we can forward declare foo:

procedure foo (); forward;
procedure bar (); begin foo() end;
procedure foo (); begin bar() end;

[33]

520—Spring 2005—1

Orthogonality: Order of Declaration. . .

Declaration-Before-Use
(* This is illegal: *)
procedure bar (); begin foo() end;
procedure foo (); begin bar() end;

foo is called before it is declared.

In a strict declaration-before-use language it’s
impossible to declare mutually recursive procedures,
like foo & bar above.

In many dialects of Pascal we can forward declare foo:

procedure foo (); forward;
procedure bar (); begin foo() end;
procedure foo (); begin bar() end;

[33] 520—Spring 2005—1

Orthogonality: Order of Declaration. . .

Free Order of Declaration
The compiler must be able to handle a reference to a
name before it is declared:

PROCEDURE P (v:T); BEGIN x := 5 END P;
TYPE T = ARRAY [1..C3] OF CHAR;
CONST C3 = 5;
VAR x : INTEGER;

The compiler must detect illegal recursive declarations:

CONST C1 = C2 + 1;
C2 = C1 + 2;

TYPE R1 = RECORD x : R2 END;
R2 = RECORD y : R1 END;

[34]

520—Spring 2005—1

Orthogonality: Order of Declaration. . .

Free Order of Declaration
The compiler must be able to handle a reference to a
name before it is declared:

PROCEDURE P (v:T); BEGIN x := 5 END P;
TYPE T = ARRAY [1..C3] OF CHAR;
CONST C3 = 5;
VAR x : INTEGER;

The compiler must detect illegal recursive declarations:

CONST C1 = C2 + 1;
C2 = C1 + 2;

TYPE R1 = RECORD x : R2 END;
R2 = RECORD y : R1 END;

[34] 520—Spring 2005—1

Orthogonality: Order of Declaration. . .

Modula-2 and some other languages allow free order of
declarations for some language elements (procedures)
but require declaration-before-use for others (types and
constants).

Thus Modula-2 is completely non-orthogonal with
respect to order of declaration!

This compromise, however, makes life reasonably OK
both for the programmer and the compiler-writer.

[35]

520—Spring 2005—1

First Class Citizenship

Generally, a value in a programming language is
said to have first-class status if it can be passed as
a parameter, returned from a sub-routine, or
assigned into a variable. [. . .] A second class value
can be passed as a parameter, but not returned
from a subroutine or assigned into a variable, and a
third-class value can’t even be passed as a
parameter. [Scott, p. 143]

Labels are third-class in Pascal but second-class in
Algol.

Pascal functions can take other functions as arguments
but cannot return a function as the result.

[36] 520—Spring 2005—1

First Class: Procedure Nesting. . .

Since the early-60’s programming language designers
have wrestled with the problem of large name spaces.
Any large program will contain many names (declared
procedures, types, variables, etc). How do we prevent
name-clashes?

We may, for example, want a function Append that
concatenates strings together, and another function
Append the concatenates lists.

In other words, we need to be able to control the
visibility of names, i.e. make them visible in some part
of the program and hidden in other parts.

[37]

520—Spring 2005—1

First Class: Procedure Nesting. . .

Algol introduced nested procedures:

procedure P ();
var x : char;

procedure Q ();
var x : integer;
begin x := 5; end;

begin x := "X"; Q(); end

In Modula-2 you can pass a function as argument to
another function. However, you can’t pass a nested
function. This makes life easier for the compiler, but hell
for the programmer.

[38] 520—Spring 2005—1

First Class: Procedure Nesting. . .

TYPE F = PROCEDURE();
PROCEDURE R(func:F); BEGIN END;

PROCEDURE S(); BEGIN END;

PROCEDURE P();
VAR X : INTEGER;
PROCEDURE Q ();
BEGIN X := 5; END;

BEGIN
R(S); (* ⇐ Legal in Modula-2! *)
R(Q); (* ⇐ Illegal in Modula-2! *)

END;

[39]

520—Spring 2005—1

Transparent Data Types

A data type is transparent when all values of that
type can be named and represented as literals
within the language.

Pascal arrays and records have no literal
representation. But, in Java you can say

int[] A = {2,3,5,7,9,11,13};

Pascal, however, has literal sets:

X := [1, 5..9];

[40] 520—Spring 2005—1

Machine Independence/Portability

The language specification can be “loose”, giving much
leeway to the implementation:

How big is an INTEGER, REAL, CHAR?
What representation is used for characters (ASCII,
Unicode, EBCDIC)?
How deeply can procedures be nested?

Java is very strict, it specifies that
Characters are Unicode.
int, floats are 32-bit, double and longs 64-bit.
Mathematical functions (in
java.lang.StrictMath) should be implemented
as in http://metalab.unc.edu.

[41]

520—Spring 2005—1

Machine Independence/Portability. . .

Java . . .
IEEE floating-point standards apply to float and
double data types. (This sucks if you’re writing a
Java compiler for the Cray which has their own
floating point format.)

C++ is less strict, it specifies that
short and int could be the same.
float, double, long could be implemented the
same.

Ada and Modula-2 has a special SYSTEM module that
contains any system-specific definitions.

[42] 520—Spring 2005—1

DEFINITION MODULE SYSTEM;

CONST BITSPERLOC = 8;

TYPE LOC; (* Smallest addressable unit of storage *)

ADDRESS = POINTER TO LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;

(* The address given by (offset + addr). *)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;

(* The address of variable v *)

PROCEDURE CAST(<targettype>; val: <anytype>): <targettype>;

(* CAST is a type transfer function. *)

PROCEDURE TSIZE (<type>; ...): CARDINAL;

(* Number of LOCS used to store a value of type <type>. *)

END SYSTEM.

[43]

http://metalab.unc.edu

520—Spring 2005—1

Verifiability

In the 70s there were several attempts at constructing
languages where programs could be verified (proved)
to be correct.

This didn’t go anywhere. Real programs are way too
complex to be amenable to automatic analysis. There
has been recent interest, however, in languages that
allow you to find bugs automatically.

In C++ you can say
assert (arg>=0 && arg<=100) . A violation
causes an exception to be thrown at runtime.

Eiffel takes this one step further with its
design by contract . Contracts can either be verified at
runtime (expensive) or compile-time (hard).

[44] 520—Spring 2005—1

Verifiability: Design by Contract

class interface DICTIONARY [ELEMENT] feature

put (x: ELEMENT; key: STRING) is

--- Insert x so that it will be retrievable through key.

require

count <= capacity

not key.empty

ensure

has (x)

item (key) = x

count = old count + 1

invariant

0 <= count

count <= capacity

end

http://archive.eiffel.com/doc/manuals/technology/contract

[45]

520—Spring 2005—1

Consistency with Familiar Notations

Respect common expectations regarding
established notation.

COBOL: ADD B TO C GIVING A.

APL: Expressions are evaluated right-to-left. There is
no operator precedence. (I actually like this.)

C has 16 levels of precedence in order to appear
“natural.”

Notation that may appear natural to some people are
not to others. (Ask your English-major friends about the
distributive law of arithmentic.)

[46] 520—Spring 2005—1

Uniformity

Similar things should have similar meanings.
Different things should have different meanings.

Ada: F(x) can either be a function call or an array
reference. This kind-of makes sense (functions and
arrays are somewhat similar), but not always:

y := F(x); -- Array reference or function call

F(x) := 5; -- Must be an array reference; functions

-- can’t be assigned to.

P(F); -- F must be an array; functions can’t

-- be passed as arguments.

[47]

http://archive.eiffel.com/doc/manuals/technology/contract

520—Spring 2005—1

Uniformity. . .

Some languages support user-defined overloaded
functions and operators to improve uniformity:

function Sin (Angles : in Matrix) return Matrix;
function Sin (Angles : in Vector) return Vector;
function Sin (Angle : in Radians) return Real;
function "+" (X, Y : in Matrix) return Matrix;

begin
X := Sin(Y); -- Which Sin???
S := A + B; -- Which "+"???

Java uses + both for addition (which is commutative)
and string concatenation (which isn’t). This is bad.

[48] 520—Spring 2005—1

Support for Programming-In-The-Large

It was soon discovered that procedure nesting (as in
Pascal) did not give enough visibility control.

Instead, modules were introduced. A module is simply
a language construct that collects a number of
declarations together, and that controls their visibility.
I.e. a module may make some of its names visible to
other modules, and may hide others.

We say that a module exports some of its names
(makes them available to other modules), and imports
names from other modules.

[49]

520—Spring 2005—1

Programming-In-The-Large. . .

In many languages, the module is also the primary
unit of separate compilation . We don’t want to compile
a large program all at once, and we want different
programmers to be able to work on the same program
simultaneously. We therefore make each module
textually separate (each module is in its own file), and
design our compiler so that it can compile one file at a
time.

The example in the next slide is from Modula-2. Each
module has two parts, a definition and an
implementation module. Each part is separately
compiled.

[50] 520—Spring 2005—1

Programming-In-The-Large. . .

DEFINITION MODULE M;
TYPE T = INTEGER;
PROCEDURE P (x : T);

END M.

IMPLEMENTATION MODULE M;
VAR X : T; (* Hidden from R. *)
PROCEDURE P (x : T); BEGIN · · · END P;

END N.

IMPLEMENTATION MODULE R;
FROM M IMPORT T, P;
VAR X : T;

BEGIN P(); END R.

[51]

520—Spring 2005—1

Programming-In-The-Large. . .

The definition part of the module defines the names
that are exported from the module. The implementation
part gives the actual definitions of the names, e.g.
bodies of exported procedures.

Obviously, modules and separate compilation
complicates the compiler significantly:

We have to be able to compile one module at a time.
If a module imports the same name from more than
one module (e.g. Append from the modules List
and String) we have to be able to determine which
symbol should actually be used.

[52] 520—Spring 2005—1

Support for Information Hiding

David Parnas’ Principle of Information Hiding:

1. A module’s specification must provide to the intended
user all the information that he will need to use the
program, and nothing more.

2. The specification must provide to the implementer all
the information about the intended use that he needs to
complete the program, and no additional information.

Modula-2’s opaque type is used to build modules that
hide all information within a module’s implementation
part.

Modula-2’s opaque types must be pointers, however, so
the construct isn’t orthogonal .

[53]

520—Spring 2005—1

Support for Information Hiding. . .

DEFINITION MODULE Stack;

TYPE T; (* An opaque type. *)

PROCEDURE Push (stack:T; element:INTEGER);

END M.

IMPLEMENTATION MODULE Stack;

TYPE T = POINTER TO RECORD top:INTEGER; store:ARRAY...END;

PROCEDURE Push (stack:T; element:INTEGER);

BEGIN · · · END Push;

END N.

IMPLEMENTATION MODULE R;

VAR S : Stack.T;

BEGIN

Stack.Push(S,100); ⇐ Can’t access Stack’s internals here!

END R.

[54] 520—Spring 2005—1

Extensibility

We should be able to create new data types that
behave much like the built-in ones.

If you can declare an array of integers why can’t you
define your own hash table package and declare a
hashtable of integer?

Here we use an Ada generic module Stack to create
two stacks, a stack of 100 integers, and a stack of 300
booleans:

package StackInt is new Stack(100, INTEGER);

package StackBool is new Stack(300, BOOLEAN);

begin

StackInt.Push(123);

StackBool.Push(TRUE);

end
[55]

520—Spring 2005—1

Extensibility. . .

Here’s the implementation of the generic stack module:
generic

Size : POSITIVE;
type ITEM is private;

package Stack is
procedure Push (E: in ITEM);

end Stack;

package body Stack is
type TABLE is array

(POSITIVE range <>) of ITEM; · · ·
procedure Push (E: in ITEM) is · · ·

end Stack;

[56] 520—Spring 2005—1

Software Engineering by Language
Design

[57]

520—Spring 2005—1

Preventing interference

How can I prevent other programmers from writing
code that will interfere with mine?

Modules, restricted name spaces, information hiding

[58] 520—Spring 2005—1

Preventing interference

How can I prevent other programmers from writing
code that will interfere with mine?

Modules, restricted name spaces, information hiding

[58]

520—Spring 2005—1

Preventing illegal operations

How can I prevent other programmers from applying
the wrong operations to a variable (taking the length
of an integer rather than a string)?

Strong typing

[59] 520—Spring 2005—1

Preventing illegal operations

How can I prevent other programmers from applying
the wrong operations to a variable (taking the length
of an integer rather than a string)?

Strong typing

[59]

520—Spring 2005—1

Preventing Redundancy

How can I avoid having to write the same code over
and over again, when it only differs in a minor way?

Generics, polymorphism, classes, higher-order
functions, pattern languages

[60] 520—Spring 2005—1

Preventing Redundancy

How can I avoid having to write the same code over
and over again, when it only differs in a minor way?

Generics, polymorphism, classes, higher-order
functions, pattern languages

[60]

520—Spring 2005—1

Providing Flexibility

How can I provide flexibility at runtime for cases
where little information (about types of values, for
example) are known?

Polymorphism, casting, coersion, dynamic loading of
modules/classes

[61] 520—Spring 2005—1

Providing Flexibility

How can I provide flexibility at runtime for cases
where little information (about types of values, for
example) are known?

Polymorphism, casting, coersion, dynamic loading of
modules/classes

[61]

520—Spring 2005—1

Error Handling

How can I deal with runtime errors in a efficient and
effective way?

Exceptions

[62] 520—Spring 2005—1

Error Handling

How can I deal with runtime errors in a efficient and
effective way?

Exceptions

[62]

520—Spring 2005—1

Control Flow

How can I concisely express the flow of control in
my programs?

Control structures, iterators, coroutines, threads,
exceptions, continuations

[63] 520—Spring 2005—1

Control Flow

How can I concisely express the flow of control in
my programs?

Control structures, iterators, coroutines, threads,
exceptions, continuations

[63]

520—Spring 2005—1

User-defined Types and Operations

How can I extend the language I’m programming in
with my own types and type variants along with
associated operations?

Inheritance, classes, variant records, modules

[64] 520—Spring 2005—1

User-defined Types and Operations

How can I extend the language I’m programming in
with my own types and type variants along with
associated operations?

Inheritance, classes, variant records, modules

[64]

520—Spring 2005—1

Memory Management

How can I manage the storage I need to allocate for
variables, so that it is reclaimed when no longer
needed?

Stack allocation, arena allocation, garbage collection.

[65] 520—Spring 2005—1

Memory Management

How can I manage the storage I need to allocate for
variables, so that it is reclaimed when no longer
needed?

Stack allocation, arena allocation, garbage collection.

[65]

520—Spring 2005—1

Specification

How can I ensure that other programmers use my
code correctly?

Module specifications, pre-post conditions

[66] 520—Spring 2005—1

Specification

How can I ensure that other programmers use my
code correctly?

Module specifications, pre-post conditions

[66]

520—Spring 2005—1

Summary

[67] 520—Spring 2005—1

References

Check out the Language List: http://cui.unige.ch/langlist

Or these resources
http://home.nvg.org/˜sk/lang/lang.html

http://extra.newsguy.com/˜nedbush/proglang.htm

http://www.cs.mun.ca/˜ulf/pld/pls.html

http://www-cs.canisius.edu/PL_TUTORIALS

http://dmoz.org/Computers/Programming/Languages

See what the language list writes about your favorite
and least favorite language.

Look up the ZUSE language in the Language List.
Sounds good, doesn’t it?

[68]

520—Spring 2005—1

Homework

Read Chapter 1 Introduction in Scott.

[69] 520—Spring 2005—1

FORTRAN

[70]

http://cui.unige.ch/langlist
http://home.nvg.org/~sk/lang/lang.html
http://extra.newsguy.com/~nedbush/proglang.htm
http://www.cs.mun.ca/~ulf/pld/pls.html
http://www-cs.canisius.edu/PL_TUTORIALS
http://dmoz.org/Computers/Programming/Languages

520—Spring 2005—1

The First Major Language

FORTRAN I was the first “high-level” programming
language. It’s designers also wrote the first real
compiler and invented many of the techniques that we
use today.

The FORTRAN manual can be found here:
http://www.fh-jena.de/˜kleine/history.

The excerpt on the next few slides is taken from
John Backus, The history of FORTRAN I, II, and
III, History of Programming Languages, The first
ACM SIGPLAN conference on History of
programming languages, 1978.

[71] 520—Spring 2005—1

The First Compiler

Before 1954 almost all programming was done in machine

language or assembly language. Programmers rightly regarded

their work as a complex, creative art that required human

inventiveness to produce an efficient program. Much of their

effort was devoted to overcoming the difficulties created by

the computers of that era: the lack of index registers, the

lack of builtin floating point operations, restricted

instruction sets (which might have AND but not OR, for

example), and primitive input- output arrangements. Given

the nature of computers, the services which "automatic

programming" performed for the programmer were concerned with

overcoming the machine’s shortcomings. Thus the primary

concern of some "automatic programming" systems was to allow

the use of symbolic addresses and decimal numbers...

[72]

520—Spring 2005—1

The First Compiler. . .

Another factor which influenced the development of FORTRAN

was the economics of programming in 1954. The cost of

programmers associated with a computer center was usually at

least as great as the cost of the computer itself. ... In

addition, from one quarter to one half of the computer’s time

was spent in debugging. ...

This economic factor was one of the prime motivations which

led me to propose the FORTRAN project ... in late 1953 (the

exact date is not known but other facts suggest December 1953

as a likely date). I believe that the economic need ...

provided for our constantly expanding needs over the next

five years without ever asking us to project or justify those

needs in a formal budget.

[73] 520—Spring 2005—1

The First Compiler. . .

It is difficult for a programmer of today to comprehend what

"automatic program- ming" meant to programmers in 1954. To

many it then meant simply providing mnemonic operation codes

and symbolic addresses, to others it meant the simple process

of obtaining subroutines from a library and inserting the

addresses of operands into each subroutine. ...

We went on to raise the question "...can a machine translate

a sufficiently rich mathematical language into a sufficiently

economical program at a sufficiently low cost to make the

whole affair feasible?" ...

[74]

http://www.fh-jena.de/~kleine/history

520—Spring 2005—1

The First Compiler. . .

In view of the widespread skepticism about the possibility of

producing efficient programs with an automatic programming

system and the fact that inefficiencies could no longer be

hidden, we were convinced that the kind of system we had in

mind would be widely used only if we could demonstrate that

it would produce programs almost as efficient as hand coded

ones and do so on virtually every job.

As far as we were aware, we simply made up the language as we

went along. We did not regard language design as a difficult

problem, merely a simple prelude to the real problem:

designing a compiler which could produce efficient programs.

Of course one of our goals was to design a language which

would make it possible for engineers and scientists to write

programs themselves for the 704. ... Very early in our work

we had in mind the notions of assignment statements,

subscripted variables, and the DO statement....

[75] 520—Spring 2005—1

The First Compiler. . .

The language described in the "Preliminary Report" had

variables of one or two characters in length, function names

of three or more characters, recursively defined

"expressions", subscripted variables with up to three

subscripts, "arithmetic formulas" (which turn out to be

assignment statements), and "DO-formulas".

One much-criticized design choice in FORTRAN concerns the use

of spaces: blanks were ignored, even blanks in the middle of

an identifier. There was a common problem with key-punchers

not recognizing or properly counting blanks in handwritten

data, and this caused many errors. We also regarded ignoring

blanks as a device to enable programmers to arrange their

programs in a more readable form without altering their

meaning or introducing complex rules for formatting

statements.

[76]

520—Spring 2005—1

The First Compiler. . .

Section I was to read the entire source program, compile what

instructions it could, and file all the rest of the

information from the source program in appropriate tables.

...

Using the information that was filed in section I, section 2

faced a completely new kind of problem; it was required to

analyze the entire structure of the program in order to

generate optimal code from DO statements and references to

subscripted variables. ...

[77] 520—Spring 2005—1

The First Compiler. . .

section 4, ... analyze the flow of a program produced by

sections I and 2, divide it into "basic blocks" (which

contained no branching), do a Monte Carlo (statistical)

analysis of the expected frequency of execution of basic

blocks--by simulating the behavior of the program and keeping

counts of the use of each block--using information from DO

statements and FREQUENCY statements, and collect information

about index register usage ... Section 5 would then do the

actual transformation of the program from one having an

unlimited number of index registers to one having only three.

The final section of the compiler, section 6, assembled the

final program into a relocatable binary program...

[78]

520—Spring 2005—1

The First Compiler. . .

Unfortunately we were hopelessly optimistic in 1954 about the

problems of debugging FORTRAN programs (thus we find on page

2 of the Report: "Since FORTRAN should virtually eliminate

coding and debugging...")

Because of our 1954 view that success in producing efficient

programs was more important than the design of the FORTRAN

language, I consider the history of the compiler construction

and the work of its inventors an integral part of the history

of the FORTRAN language; ...

[79]

	What's a Programming Language?
	What's a Language???
	Example Languages
	Programming Language Design
	Programming Language Design
	Programming Language Designldots
	Programming Language Designldots
	Programming Language Designldots
	Programming Language Designldots
	Programming Language Designldots

	Goals of Programming Language Design
	Goals of Programming Language Designldots
	Goals of Programming Language Designldots
	Compilers and Languages
	Compilers and Languages
	Compilers and Languagesldots
	History of Procedural Languages
	Goals of Language Design
	Simplicity
	Expressiveness
	Well-defined description
	Well-defined descriptionldots
	Well-defined descriptionldots
	Well-defined descriptionldots
	Well-defined descriptionldots
	Reliability/Safety
	Reliability/Safetyldots
	Reliability/Safetyldots
	Fast Translation
	Efficient Object Code
	Orthogonality
	Orthogonalityldots
	Orthogonality: Order of Declaration
	Orthogonality: Order of Declarationldots
	Orthogonality: Order of Declarationldots

	Orthogonality: Order of Declarationldots
	Orthogonality: Order of Declarationldots

	Orthogonality: Order of Declarationldots
	First Class Citizenship
	First Class: Procedure Nestingldots
	First Class: Procedure Nestingldots
	First Class: Procedure Nestingldots
	Transparent Data Types
	Machine Independence/Portability
	Machine Independence/Portabilityldots
	Verifiability
	Verifiability: Design by Contract
	Consistency with Familiar Notations
	Uniformity
	Uniformityldots
	Support for Programming-In-The-Large
	Programming-In-The-Largeldots
	Programming-In-The-Largeldots
	Programming-In-The-Largeldots
	Support for Information Hiding
	Support for Information Hidingldots
	Extensibility
	Extensibilityldots
	Software Engineering by Language Design
	Preventing interference
	Preventing interference

	Preventing illegal operations
	Preventing illegal operations

	Preventing Redundancy
	Preventing Redundancy

	Providing Flexibility
	Providing Flexibility

	Error Handling
	Error Handling

	Control Flow
	Control Flow

	User-defined Types and Operations
	User-defined Types and Operations

	Memory Management
	Memory Management

	Specification
	Specification

	Summary
	References
	
edtxt {Homework}
	FORTRAN
	The First Major Language
	The First Compiler
	The First Compilerldots
	The First Compilerldots
	The First Compilerldots
	The First Compilerldots
	The First Compilerldots
	The First Compilerldots
	The First Compilerldots

