CSc 520

Principles of Programming
Languages
12: Haskell — Function Definitions

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2004 Christian Collberg

—Spring 2005—12 [1]

Defining Functions

When programming in a functional language we have
basically two techniques to choose from when defining
a new function:

1. Recursion
2. Composition

Recursion is often used for basic “low-level” functions,
such that might be defined in a function library.

Composition (which we will cover later) is used to
combine such basic functions into more powerful ones.

Recursion is closely related to proof by induction.

520—Spring 2005—12 [2]

Defining Functions. ..

» Here’s the ubiquitous factorial function:

fact :: Int -> Int
fact n = if n == 0 then
1
el se
n * fact (n-1)
The first part of a function definition is the type

signature, which gives the domain and range of the
function:

fact :: Int -> Int

The second part of the definition is the function
declaration, the implementation of the function:

fact n =if n==0 then --.

C Cnhrine ONNE 19 2l

Defining Functions. ..

#® The syntax of a type signature is

cHoNn ©

fun_nanme :: argunent types

f act takes one integer input argument and returns one
integer result.

The syntax of function declarations:
fun_nanme paramnanes = fun_body

if e; then ey el se e3is a conditional expression
that returns the value of e if e; evaluates to Tr ue. If e;

evaluates to Fal se, then the value of e3 is returned.
Examples:

if False then 5 el se 6 = 6
if 1==2 then 5 else 6 = 6
5+ if 1==1 then 3 else 2 = 8

imy ONNE 19 r1

Defining Functions. ..

Standard Recursive Functions

» fact is defined recursively, i.e. the function body _ _ _ o _
h Py : lication is: guard (a boolean expression), a base case (evaluated
* Th_e syntax o limctlon application is: f un_name arg. when the guard is Tr ue), and a general case
This syntax is known as “juxtaposition”. (evaluated when the guard is False).
» We will discuss multi-argument functions later. For now, _
this is what a multi-argument function application (“call”) fact n =
looks like: iIf n==0 then < guard
1 < base case
fun.name arg.1l arg2 --- argn el se
Function application examples: n * fact (n-1) < general case
fact 1 = 1
fact 5 = 120
fact (3+2) = 120
—Spring 2005—12 [5] 520—Spring 2005—12 [6]
Simulating Recursive Functions Tree View of f act 3
We can visualize the evaluation of f act 3 using a tree fact 3
view, box view, or reduction view. ifgthen 1 . _
The tree and box views emphasize the flow-of-control else 3 * fact 3-1) ®]:g::'ts ?!S a Tree View of
from one level of recursion to the next H/ ' _
The reduction view emphasizes the substitution steps T LS « fact D) ® \é\éee or li(r?t?)pthe r%%ISE
that the hugs interpreter goes through when evaluating e sionp (evaluating the
a function. In our notation boxed subexpressions are /\/ eneral case) ur?til the
substituted or evaluated in the next reduction. if 1==0 then 1 9 :
else 1 * fact (1-1) guard is evaluated to
» Note that the Haskell interpreter may not go through fact 0 Tr ue.

Chri

exactly the same steps as shown in our simulations.
More about this later.

e ONNE 19 r-1

if 0==0 then 1
else ...

Y9N Cnhrrine O2°NNE 19 rol

Tree View of f\ act3

fact 3
/ ‘ 3*2=6

if 3==0 then 1 ;
else 3 * fact (3 1)

/_fﬂ/ \ze2

if 2==0 then 1
else 2 * fact (2 1)

/—EJ N1r1=1

if 1==0 then 1
else 1 * fact (1-1

if 0==0 then 1
else ...

—Spring 2005—12

When the guard is
Tr ue we evaluate the
base case and return
back up through the
layers of recursion.

Box View of\f act 3

fact 3

if

then

else

520—Spring 2005—12

(10]

Box View of f\a\ct¥ 3 .

if

then |

else

C Cnhrine ONNE 19

rM11

Box View of f\a\ct¥ 3 .

cHoNn ©

fact 3

if

then

else

“rine ONNE 19

Mo

Reduction View of fact 3

act 3 =

f 3==0then 1 else 3 * fact (3-1) =

f False then 1 else 3 * fact (3-1) =

* fact (3-1) =

fact 2 =

if 2 ==0then 1 else 2 * fact (2-1)=

if False then 1 else 2 * fact (2-1) =

(2 * fact (2-1)) =

(2 * fact 1) =

(2*if 1 ==0then 1 else 1 * fact (1-1))

o T T .

—Spring 2005—12 [13]

Reduction View of f act 3...

*(2*if 1 ==0then 1 else 1 * fact (1-1)) =
* (2 * if False then 1 else 1 * fact (1-1)) =
(2 (1 * fact (1-1))) =

(2 (1 * fact 0)) =

(2 (1 *if True then 1 else 0 * fact (0-1))) =
(2(1*1) =

(2 1) =

* 2 =

O W W W wWwwwwww
*

520—Spring 2005—12 [14]

Re_cursion Over Lis’gs

Inthe f act function the guard was n==0, and the
recursive step was f act (n-1) . l.e. we subtracted 1
from f act 's argument to make a simpler (smaller)
recursive case.

#® We can do something similar to recurse over a list:

1. The guard will often be n==[] (other tests are of
course possible).

2. To get a smaller list to recurse over, we often split the
list into its head and tail, head: t ai | .

3. The recursive function application will often be on
the tail, f tail.

C Cnhrine ONNE 19 rMci

The | engt h‘ Functign

In English:

The length of the empty list[] is zero. The length
of a non-empty list S is one plus the length of the

tail of S.

In Haskell:
len :: [Int] -> Int
len s = if s ==] then

0
el se

1 +len (tail s)

» We first check if we've reached the end of the list s==
] . Otherwise we compute the length of the tail of s, and
add one to get the length of s itself.

Y9N Cnhrrine O2°NNE 19 Moel

(2*(12*if O==0then 1 else 0 * fact (0-1))) =

Reductlon View ofI en [5 6]

= e

en s = if s =]] then 0 else 1 + len (tail s)
en [5,6] =

if [5,6]==[] then O else 1 + len (tail

1 +1len (tail [5,6]) =

1 +1len [6] =

1+ (if [6]==[] then O else 1 + len (tail
1+ (1 +1len (tail [6])) =
1+(1L+len[]) =

1+ (1 + (if []==[] then O else 1+len (tail
1+(1+0)) =1+1=2

—Spring 2005—12

(17]

[5,6]) =

[6])) =

[D) =

TreeV|ewofI en [5 6 7]

= e =z -

len |5, 6, /]

/ ‘ 14273

if [5,6,7]==[] thenO
else 1 + len_(tail [56,7])

/,EL[@

if [6,7]==[] then O
else 1 + len (tall [6,7])

/'@ 10

if [7]==[] then O ‘
else 1 + len (tail [7])

//,JEHL;>

if []==[] then 0 -
else ...

1+1=2

520—Spring 2005—12

len ::
len s =

[Int] -> Int

If s==[] then O
el se 1+l en(tail s)
® Tree View of |en
[5, 6, 7]

(18]

	Defining Functions
	Defining Functionsldots
	Defining Functionsldots
	Defining Functionsldots
	Standard Recursive Functions
	Simulating Recursive Functions
	Tree View of {	t fact 3}
	Tree View of {	t fact 3}
	Box View of {	t fact 3}
	Box View of {	t fact 3}ldots
	Box View of {	t fact 3}ldots
	Reduction View of {	t fact 3}
	Reduction View of {	t fact 3}ldots
	Recursion Over Lists
	The {	t length} Function
	Reduction View of {	t len [5,6]}
	Tree View of {	t len [5,6,7]}

