
520—Spring 2005—15

CSc 520

Principles of Programming
Languages

15: Haskell — Curried Functions

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—15

Declaring Infix Functions

Sometimes it is more natural to use an infix notation for
a function application, rather than the normal prefix one:

5 + 6 (infix)
(+) 5 6 (prefix)

Haskell predeclares some infix operators in the
standard prelude, such as those for arithmetic.
For each operator we need to specify its precedence
and associativity. The higher precedence of an
operator, the stronger it binds (attracts) its arguments:
hence:

3 + 5*4 ≡ 3 + (5*4)
3 + 5*4 6≡ (3 + 5) * 4

[2]

520—Spring 2005—15

Declaring Infix Functions. . .

The associativity of an operator describes how it binds
when combined with operators of equal precedence.
So, is
5-3+9 ≡ (5-3)+9 = 11

OR
5-3+9 ≡ 5-(3+9) = -7

The answer is that + and - associate to the left, i.e.
parentheses are inserted from the left.

Some operators are right associative: 5ˆ3ˆ2 ≡
5ˆ(3ˆ2)

Some operators have free (or no) associativity.
Combining operators with free associativity is an error:
5 == 4 < 3 ⇒ ERROR

[3] 520—Spring 2005—15

Declaring Infix Functions. . .

The syntax for declaring operators:
infixr prec oper -- right assoc.
infixl prec oper -- left assoc.
infix prec oper -- free assoc.

From the standard prelude:
infixl 7 *
infix 7 /, ‘div‘, ‘rem‘, ‘mod‘
infix 4 ==, /=, <, <=, >=, >

An infix function can be used in a prefix function
application, by including it in parenthesis. Example:

? (+) 5 ((*) 6 4)
29

[4]



520—Spring 2005—15

Multi-Argument Functions

Haskell only supports one-argument functions.

An n-argument function f(a1, · · · , an) is constructed in
either of two ways:
1. By making the one input argument to f a tuple

holding the n arguments.
2. By letting f “consume” one argument at a time. This

is called currying.

Tuple Currying
add :: (Int,Int)->Int
add (a, b) = a + b

add :: Int->Int->Int
add a b = a + b

[5] 520—Spring 2005—15

Currying

Currying is the preferred way of constructing
multi-argument functions.

The main advantage of currying is that it allows us to
define specialized versions of an existing function.

A function is specialized by supplying values for one or
more (but not all) of its arguments.

Let’s look at Haskell’s plus operator (+). It has the type

(+) :: Int -> (Int -> Int).

If we give two arguments to (+) it will return an Int:
(+) 5 3 ⇒ 8

[6]

520—Spring 2005—15

Currying. . .

If we just give one argument (5) to (+) it will instead
return a function which “adds 5 to things”. The type of
this specialized version of (+) is Int -> Int.

Internally, Haskell constructs an intermediate –
specialized – function:
add5 :: Int -> Int
add5 a = 5 + a

Hence, (+) 5 3 is evaluated in two steps. First (+) 5
is evaluated. It returns a function which adds 5 to its
argument. We apply the second argument 3 to this new
function, and the result 8 is returned.

[7] 520—Spring 2005—15

Currying. . .

To summarize, Haskell only supports one-argument
functions. Multi-argument functions are constructed by
successive application of arguments, one at a time.

Currying is named after logician Haskell B. Curry
(1900-1982) who popularized it. It was invented by
Schönfinkel in 1924. Schönfinkeling doesn’t sound too
good...
Note: Function application (f x) has higher
precedence (10) than any other operator. Example:
f 5 + 1 ⇔ (f 5) + 1
f 5 6 ⇔ (f 5) 6

[8]



520—Spring 2005—15

Currying Example

Let’s see what happens when we evaluate f 3 4 5,
where f is a 3-argument function that returns the sum
of its arguments.

f :: Int -> (Int -> (Int -> Int))
f x y z = x + y + z

f 3 4 5 ≡ ((f 3) 4) 5

[9] 520—Spring 2005—15

Currying Example. . .

(f 3) returns a function f’ y z (f’ is a specialization
of f) that adds 3 to its next two arguments.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5

f’ :: Int -> (Int -> Int)
f’ y z = 3 + y + z

[10]

520—Spring 2005—15

Currying Example. . .

(f’ 4) (≡ (f 3) 4) returns a function f’’z (f’’ is a
specialization of f’) that adds (3+4) to its argument.

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5
⇒ f’’ 5

f’’ :: Int -> Int
f’’ z = 3 + 4 + z

Finally, we can apply f’’ to the last argument (5) and
get the result:

f 3 4 5 ≡ ((f 3) 4) 5 ⇒ (f’ 4) 5
⇒ f’’ 5 ⇒ 3+4+5 ⇒ 12

[11] 520—Spring 2005—15

Currying Example

The Combinatorial Function:
The combinatorial function

(

n

r

)

“n choose r”, computes
the number of ways to pick r objects from n.

(

n

r

)

=
n!

r! ∗ (n − r)!

In Haskell:
comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))

? comb 5 3
10

[12]



520—Spring 2005—15

Currying Example. . .

comb :: Int -> Int -> Int
comb n r = fact n/(fact r*fact(n-r))
comb 5 3 ⇒ (comb 5) 3 ⇒

comb5 3 ⇒
120 / (fact 3 * (fact 5-3)) ⇒
120 / (6 * (fact 5-3)) ⇒
120 / (6 * fact 2) ⇒
120 / (6 * 2) ⇒
120 / 12 ⇒
10

comb5 r = 120 / (fact r * fact(5-r))

comb5 is the result of partially applying comb to its first
argument.

[13] 520—Spring 2005—15

Associativity

Function application is left-associative:
f a b = (f a) b f a b 6= f (a b)

The function space symbol ‘->’ is right-associative:
a -> b -> c = a -> (b -> c)
a -> b -> c 6= (a -> b) -> c

f takes an Int as argument and returns a function of
type Int -> Int. g takes a function of type Int ->
Int as argument and returns an Int:
f’ :: Int -> (Int -> Int)

m
f :: Int -> Int -> Int

6m
g :: (Int -> Int) -> Int

[14]

520—Spring 2005—15

What’s the Type, Mr. Wolf?

If the type of a function f is
t1 -> t2 -> · · · -> tn -> t

and f is applied to arguments
e1::t1, e2::t2, · · ·, ek::tk,

and k ≤ n

then the result type is given by cancelling the types
t1 · · · tk:
6 t1 -> 6 t2 -> · · · -> 6 tk -> tk+1 -> · · · -> tn -> t

Hence, f e1 e2 · · · ek returns an object of type
tk+1 -> · · · -> tn -> t.

This is called the Rule of Cancellation.

[15] 520—Spring 2005—15

Polymorphic Functions

In Pascal we can’t write a generic sort routine, i.e. one
that can sort arrays of integers as well as arrays of
reals:

procedure Sort (
var A : array of <type>;
n : integer);

In Haskell (and many other FP languages) we can write
polymorphic (“many shapes”) functions.
Functions of polymorphic type are defined by using type
variables in the signature:
length :: [a] -> Int
length s = ...

[16]



520—Spring 2005—15

Polymorphic Functions. . .

length is a function from lists of elements of some
(unspecified) type a, to integer. I.e. it doesn’t matter if
we’re taking the length of a list of integers or a list of
reals or strings, the algorithm is the same.
length [1,2,3] ⇒ 3 (list of Int)
length ["Hi ", "there", "!"] ⇒ 3 (list of String)
length "Hi!" ⇒ 3 (list of Char)

[17] 520—Spring 2005—15

Polymorphic Functions. . .

We have already used a number of polymorphic
functions that are defined in the standard prelude.
head is a function from “lists-of-things” to “things”:

head :: [a] -> a

tail is a function from lists of elements of some type ,
to a list of elements of the same type:

tail :: [a] -> [a]

cons "(:)" takes two arguments: an element of
some type a and a list of elements of the same type. It
returns a list of elements of type a:

(:) :: a -> [a] -> [a]

[18]

520—Spring 2005—15

Polymorphic Functions. . .

Note that head and tail always take a list as their
argument. tail always returns a list, but head can
return any type of object, including a list.
Note that it is because of Haskell’s strong typing that we
can only create lists of the same type of element. If we
tried to do

? 5 : [True]

the Haskell type checker would complain that we were
consing an Int onto a list of Bools, while the type of “:” is

(:) :: a -> [a] -> [a]

[19] 520—Spring 2005—15

Summary

We want to define functions that are as reusable as
possible.
1. Polymophic functions are reusable because they can

be applied to arguments of different types.
2. Curried functions are reusable because they can be

specialized; i.e. from a curried function f we can
create a new function f’ simply by “plugging in”
values for some of the arguments, and leaving
others undefined.

[20]



520—Spring 2005—15

Summary. . .

A polymorphic function is defined using type variables
in the signature. A type variable can represent an
arbitrary type.

All occurences of a particular type variable appearing in
a type signature must represent the same type.

An identifier will be treated as an operator symbol if it is
enclosed in backquotes: "‘".

An operator symbol can be treaded as an identifier by
enclosing it in parenthesis: (+).

[21] 520—Spring 2005—15

Homework

Define a polymorphic function dup x which returns a
tuple with the argument duplicated.

Example:
? dup 1

(1,1)

? dup "Hello, me again!"
("Hello, me again!",
"Hello, me again!")

? dup (dup 3.14)
((3.14,3.14), (3.14,3.14))

[22]

520—Spring 2005—15

Homework

Define a polymorphic function copy n x which returns
a list of n copies of x.

Example:
? copy 5 "five"

["five","five","five",
"five","five"]

? copy 5 5
[5,5,5,5,5]

? copy 5 (dup 5)
[(5,5),(5,5),(5,5),(5,5),(5,5)]

[23] 520—Spring 2005—15

Homework

Let f be a function from Int to Int, i.e.
f :: Int -> Int. Define a function total f x so
that total f is the function which at value n gives the
total f 0 + f 1 + · · · + f n.

Example:
double x = 2*x
pow2 x = xˆ2
totDub = total double
totPow = total pow2
? totDub 5

30
? totPow 5

55

[24]



520—Spring 2005—15

Homework

Define an operator $$ so that x $$ xs returns True if
x is an element in xs, and False otherwise.

Example:
? 4 $$ [1,2,5,6,4,7]

True

? 4 $$ [1,2,3,5]
False

? 4 $$ []
False

[25]


	Declaring Infix Functions
	Declaring Infix Functionsldots 
	Declaring Infix Functionsldots 
	Multi-Argument Functions
	Currying
	Curryingldots 
	Curryingldots 
	Currying Example
	Currying Exampleldots 
	Currying Exampleldots 
	Currying Example
	Currying Exampleldots 
	Associativity
	What's the Type, Mr. Wolf?
	Polymorphic Functions
	Polymorphic Functionsldots 
	Polymorphic Functionsldots 
	Polymorphic Functionsldots 
	Summary
	Summaryldots 
	Homework
	Homework
	Homework
	Homework

