
520—Spring 2005—18

CSc 520

Principles of Programming
Languages

18: Haskell — Data Types

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—18

User-defined Datatypes

Haskell allows the definition of new datatypes :
data Datatype a1 . . . an = constr1 | . . .| constrm

where
1. Datatype is the name of a new type constructor of

arity n ≥ 0,
2. a1, . . . , an are distinct type variables representing the

arguments of DatatypeName and
3. constr1, . . . , constrm (m ≥ 1) describe the way in which

elements of the new datatype are constructed.

[2]

520—Spring 2005—18

User-defined Datatypes. . .

Each constr can take one of two forms:
1. Name type1 . . . type

r
where Name is a previously

unused constructor function name (i.e. an identifier
beginning with a capital letter). This declaration
introduces Name as a new constructor function of
type:

type1 → . . . → type
r
→ Datatype a1 . . . an

2. type1 ⊕ type2 where ⊕ is a previously unused
constructor function operator (i.e. an operator
symbol beginning with a colon). This declaration
introduces (⊕) as a new constructor function of type:

type1 → type2 → Datatype a1 . . . an

[3] 520—Spring 2005—18

User-defined Datatypes. . .

The following definition introduces a new type Day with
elements Sun, Mon, Tue,. . . :

data Day = Sun|Mon|Tue|Wed|Thu|Fri|Sat

Simple functions manipulating elements of type Day
can be defined using pattern matching:

what_shall_I_do Sun = "relax"
what_shall_I_do Sat = "go shopping"
what_shall_I_do _ = "go to work"

[4]

520—Spring 2005—18

User-defined Datatypes. . .

Another example uses a pair of constructors to provide
a representation for temperatures which may be given
using either of the centigrade or fahrenheit scales:

data Temp = Centigrade Float |
Fahrenheit Float

freezing :: Temp -> Bool
freezing (Centigrade temp) = temp <= 0.0
freezing (Fahrenheit temp) = temp <= 32.0

[5] 520—Spring 2005—18

User-defined Datatypes. . .

Datatype definitions may also be recursive.

The following example defines a type representing
binary trees with values of a particular type at their
leaves:

data Tree a = Lf a | Tree a :ˆ: Tree a

For example,

(Lf 12 :ˆ: (Lf 23 :ˆ: Lf 13)) :ˆ: Lf 10

has type Tree Int and represents the binary tree:

10

13
23

12

[6]

520—Spring 2005—18

User-defined Datatypes. . .

Calculate the list of elements at the leaves of a tree
traversing the branches of the tree from left to right.

leaves :: Tree a -> [a]
leaves (Lf l) = [l]
leaves (l:ˆ:r) = leaves l ++ leaves r

Using the binary tree above as an example:

? leaves ((Lf 12:ˆ:(Lf 23:ˆ:Lf 13)):ˆ:Lf 10)
[12, 23, 13, 10]
(24 reductions, 73 cells)

[7] 520—Spring 2005—18

Acknowledgements

These slides were derived directly from the Gofer
manual.

Functional programming environment, Version
2.20
c© Copyright Mark P. Jones 1991.

A copy of the Gofer manual can be found in
/home/cs520/2003/gofer/docs/goferdoc.ps.

[8]

/home/cs520/2003/gofer/docs/goferdoc.ps

	User-defined Datatypes
	User-defined Datatypesldots
	User-defined Datatypesldots
	User-defined Datatypesldots
	User-defined Datatypesldots
	User-defined Datatypesldots
	Acknowledgements

