
520—Spring 2005—19

CSc 520

Principles of Programming
Languages

19: Haskell — Lazy Evaluation

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—19

Lazy evaluation

Haskell evaluates expressions using a technique called
lazy evaluation:

No expression is evaluated until its value is needed.

No shared expression is evaluated more than once; if
the expression is ever evaluated then the result is
shared between all those places in which it is used.

The first of these ideas is illustrated by the following
function:

ignoreArgument x = "Didn’t evaluate x"

[2]

520—Spring 2005—19

Lazy evaluation. . .

Since the result of the function ignoreArgument doesn’t
depend on the value of its argument x, that argument will
not be evaluated:

? ignoreArgument (1/0)
I didn’t need to evaluate x
(1 reduction, 31 cells)
?

We can force strict evaluation when that is necessary:
? strict ignoreArgument (1/0)
{primDivInt 1 0}
(4 reductions, 29 cells)
?

[3] 520—Spring 2005—19

Lazy evaluation. . .

The second basic idea behind lazy evaluation is that no
shared expression should be evaluated more than once.
For example, the following two expressions can be used to
calculate 3 ∗ 3 ∗ 3 ∗ 3:
> /usr/local/hugs98/bin/hugs +s
> square*square where square = 3*3
81
(28 reductions, 39 cells)
> (3*3)*(3*3)
81
(34 reductions, 45 cells)
Notice that the first expression requires fewer reduction
than the second.

[4]



520—Spring 2005—19

Lazy evaluation. . .

The sequences of reductions:
square * square where square = 3 * 3

-- calculate the value of square by
-- reducing 3*3==>9 and replace each
-- occurrence of square with this result
==> 9 * 9
==> 81

(3 * 3) * (3 * 3) -- evaluate first (3*3)
==> 9 * (3 * 3) -- evaluate second (3*3)
==> 9 * 9
==> 81

Lazy evaluation means that only the minimum amount of
calculation is used to determine the result of an expression.

[5] 520—Spring 2005—19

Lazy evaluation — Example. . .

Consider the task of finding the smallest element of a list of
integers.

? minimum [100,99..1]
1
(809 reductions, 1322 cells)
?

[100,99..1] denotes the list of integers from 1 to 100
arranged in decreasing order.
Instead, we could first sort and then take the head of the
result:

? :load List
? sort [100,99..1]
[1, 2, 3, 4, 5, 6, 7, 8, ..., 99, 100]
(10712 reductions, 21519 cells)
?

[6]

520—Spring 2005—19

Lazy evaluation — Example. . .

However, thanks to lazy-evaluation, calculating just the first
element of the sorted list actually requires less work in this
particular case than the first solution using minimum:

? head (sort [100,99..1])
1
(713 reductions, 1227 cells)
?

[7] 520—Spring 2005—19

Infinite data structures

Lazy evaluation makes it possible for functions in
Haskell to manipulate ‘infinite’ data structures.

The advantage of lazy evaluation is that it allows us to
construct infinite objects piece by piece as necessary

Consider the following function which can be used to
produce infinite lists of integer values:

countFrom n = n : countFrom (n+1)
? countFrom 1
[1, 2, 3, 4, 5, 6, 7, 8,ˆC{Interrupted!}]
(53 reductions, 160 cells)
?

[8]



520—Spring 2005—19

Infinite data structures. . .

For practical applications, we are usually only interested
in using a finite portion of an infinite data structure.

We can find the sum of the integers 1 to 10:

? sum (take 10 (countFrom 1))
55
(62 reductions, 119 cells)
?

take n xs evaluates to a list containing the first n
elements of the list xs.

[9] 520—Spring 2005—19

Infinite data structures. . .

Infinite data structures enables us to describe an object
without being tied to one particular application of that
object.

The following definition for infinite list of powers of two
[1, 2, 4, 8, . . . ]:

powersOfTwo = 1 : map double powersOfTwo
where double n = 2*n

xs!!n evaluates to the nth element of the list xs.

We can define a function to find the nth power of 2 for
any given integer n:

twoToThe n = powersOfTwo !! n

[10]

520—Spring 2005—19

Acknowledgements

These slides were derived directly from the Gofer
manual.

Functional programming environment, Version
2.20
c© Copyright Mark P. Jones 1991.

A copy of the Gofer manual can be found in
/home/cs520/2003/gofer/docs/goferdoc.ps.

[11]

/home/cs520/2003/gofer/docs/goferdoc.ps

	Lazy evaluation
	Lazy evaluationldots 
	Lazy evaluationldots 
	Lazy evaluationldots 
	Lazy evaluation --- Exampleldots 
	Lazy evaluation --- Exampleldots 
	Infinite data structures
	Infinite data structuresldots 
	Infinite data structuresldots 
	Acknowledgements

