
520—Spring 2005—20

CSc 520

Principles of Programming
Languages

20: Haskell — Exercises

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—20

List Prefix

Write a recursive function begin xs ys that returns
true if xs is a prefix of ys. Both lists are lists of integers.
Include the type signature.

> begin [] []
True
> begin [1] []
False
> begin [1,2] [1,2,3,4]
True
> begin [1,2] [1,1,2,3,4]
False
> begin [1,2,3,4] [1,2]

[2]

520—Spring 2005—20

List Containment

Write a recursive function subsequence xs ys that
returns true if xs occurs anywhere within ys. Both lists
are lists of integers. Include the type signature.

Hint: reuse begin from the previous exercise.

> subsequence [] []
True
> subsequence [1] []
False
> subsequence [1] [0,1,0]
True
> subsequence [1,2,3] [0,1,0,1,2,3,5]
True

[3] 520—Spring 2005—20

Mystery

Consider the following function:

mystery :: [a] -> [[a]]
mystery [] = [[]]
mystery (x:xs) = sets ++ (map (x:) sets)

where sets = mystery xs

What would mystery [1,2] return? mystery
[1,2,3]?

What does the funtion compute?

[4]

520—Spring 2005—20

foldr

Explain what the following expressions involving foldr
do:
1. foldr (:) [] xs

2. foldr (:) xs ys

3. foldr (y ys -> ys ++ [y]) [] xs

[5] 520—Spring 2005—20

shorter

Define a function shorter xs ys that returns the
shorter of two lists.

> shorter [1,2] [1]
[1]
> shorter [1,2] [1,2,3]
[1,2]

[6]

520—Spring 2005—20

stripEmpty

Write function stripEmpty xs that removes all empty
strings from xs, a list of strings.

> stripEmpty ["", "Hello", "", "", "World!"]
["Hello","World!"]
> stripEmpty [""]
[]
> stripeEmpty []
[]

[7] 520—Spring 2005—20

merge

Write function merge xs ys that takes two ordered
lists xs and ys and returns an ordered list containing
the elements from xs and ys, without duplicates

> merge [1,2] [3,4]
[1,2,3,4]
> merge [1,2,3] [3,4]
[1,2,3,4]
> merge [1,2] [1,2,4]
[1,2,4]

[8]

520—Spring 2005—20

Data Types

Consider the following type:

data Shape = Circle Float |
Rectangle Float Float

Define a function shapeLength that computes the
length of the perimeter of a shape.

Add an extra constructor to Shape for triangles.

Define a function which decides whether a shape is
regular: a circle is regular, a square is a regular
rectangular, and being equilateral makes a triangle
regular.

[9] 520—Spring 2005—20

Function Composition

Rewrite the expression

map f (map g xs)

so that only a single call to map is used

[10]

520—Spring 2005—20

Reduce

Let the Haskell function reduce be defined by

reduce f [] v = v
reduce f (x:xs) v = f x (reduce f xs v)

Reconstruct the Haskell functions length, append, filter,
and map using reduce. More precisely, complete the
following schemata (in the simplest possible way):

mylength xs = reduce ___ xs ___
myappend xs ys = reduce ___ xs ___
myfilter p xs = reduce ___ xs ___
mymap f xs = reduce ___ xs ___

[11]

	List Prefix
	List Containment
	Mystery
	foldr
	shorter
	stripEmpty
	merge
	Data Types
	Function Composition
	Reduce

