CSc 520
Principles of Programming
Languages

20: Haskell — Exercises

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2004 Christian Collberg

—Spring 2005—20 [1]

List_&P ref\ix

» Write a recursive function begi n xs ys that returns
true if xs is a prefix of ys. Both lists are lists of integers.
Include the type signature.

> begin [] []

True

> begin [1] []

Fal se

> begin [1,2] [1,2,3,4]
True

> begin [1,2] [1,1,2,3,4]
Fal se

> begin [1,2,3,4] [1,2]

520—Spring 2005—20 [2]

List Containment

» Write a recursive function subsequence xs ys that
returns true if xs occurs anywhere within ys. Both lists
are lists of integers. Include the type signature.

# Hint: reuse begi n from the previous exercise.

> subsequence [] []

True

> subsequence [1] []

Fal se

> subsequence [1] [0, 1, 0]

True

> subsequence [1,2,3] [0,1,0,1, 2, 3,5]
True

C Chrnrinme ONNE 95N 2l

Mystery

# Consider the following function:

nystery :: [a] -> [[a]]

nystery [] = [[]]

nmystery (x:xs) = sets ++ (map (x:) sets)
where sets = nystery xs

® What would nystery [1, 2] return? nystery
[1,2,3]7

# What does the funtion compute?

Y9N Chrrine O2NNE  25°N r1



foldr

» Explain what the following expressions involving f ol dr
do:

1. foldr (:) T[] xs
2. foldr (:) xs ys

shorter

» Define a function short er xs ys that returns the
shorter of two lists.

> shorter [1,2] [1]

3. foldr (yys ->ys ++ [y]) [] xs horter [1,2] (12,3
[1,2]
—Spring 2005—20 5] 520—Spring 2005—20 6]
stripEmpty MErge

» Write function st ri pEnpty xs that removes all empty
strings from xs, a list of strings.

> stripEnpty ["", "Hello", "", "", "World!l'"]
["Hello","World!l"]

> stripEnpty [""]

[]

> stripeEmpty []

[]

C Chrnrinme ONNE 95N -1

» Write function mer ge xs ys that takes two ordered
lists xs and ys and returns an ordered list containing
the elements from xs and ys, without duplicates

> nmerge [1,2] [3,4]
[1, 2, 3, 4]

> nmerge [1,2,3] [3,4]
[1, 2, 3, 4]

> nmerge [1,2] [1,2,4]
[1, 2, 4]

Y9N Chrrine O2NNE  25°N rol



Data Types Function Composition

# Consider the following type: # Rewrite the expression
data Shape = G rcle Float | map f (map g Xxs)
Rectangl e Float Float so that only a single call to map is used

# Define a function shapelLengt h that computes the
length of the perimeter of a shape.

°

Add an extra constructor to Shape for triangles.

» Define a function which decides whether a shape is
regular: a circle is regular, a square is a regular
rectangular, and being equilateral makes a triangle
regular.

—Spring 2005—20 9] 520—Spring 2005—20 [10]

Reduce

» Let the Haskell function reduce be defined by

reduce f [] v
reduce f (Xx:xs) v

Y
f x (reduce f xs v)

# Reconstruct the Haskell functions length, append, filter,
and map using reduce. More precisely, complete the
following schemata (in the simplest possible way):

nyl engt h xs = reduce XS
nmyappend xs ys = reduce XS
nyfilter p xs = reduce XS
mymap f xs = reduce XS

C Chrnrinme ONNE 95N rM11



	List Prefix
	List Containment
	Mystery
	foldr
	shorter
	stripEmpty
	merge
	Data Types
	Function Composition
	Reduce

