
520—Spring 2005—24

CSc 520

Principles of Programming
Languages

24: Functional Programming — Conclusion

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—24

Functional Programming Languages

[2]

520—Spring 2005—24

Functional Programming

In contrast to procedural languages, functional programs
don’t concern themselves with state and memory locations.
Instead, they work exclusively with values, and
expressions and functions which compute values.

Functional programming is not tied to the von Neumann
machine.

It is not necessary to know anything about the
underlying hardware when writing a functional program,
the way you do when writing an imperative program.

Functional programs are more declarative than
procedural ones; i.e. they describe what is to be
computed rather than how it should be computed.

[3] 520—Spring 2005—24

Functional Languages

Common characteristics of functional programming
languages:

1. Simple and concise syntax and semantics.

2. Repetition is expressed as recursion rather than
iteration.

3. Functions are first class objects . I.e. functions can be
manipulated just as easily as integers, floats, etc. in
other languages.

4. Data as functions . I.e. we can build a function on the
fly and then execute it. (Some languages).

[4]

520—Spring 2005—24

Functional Languages. . .

5. Higher-order functions. I.e. functions can take
functions as arguments and return functions as results.

6. Lazy evaluation. Expressions are evaluated only when
needed. This allows us to build infinite data structures ,
where only the parts we need are actually constructed.
(Some languages).

7. Garbage Collection. Dynamic memory that is no longer
needed is automatically reclaimed by the system. GC is
also available in some imperative languages (Modula-3,
Eiffel) but not in others (C, C++, Pascal).

[5] 520—Spring 2005—24

Functional Languages. . .

8. Polymorphic types. Functions can work on data of
different types. (Some languages).

9. Functional programs can be more easily
manipulated mathematically than procedural programs.

Pure vs. Impure FPL

Some functional languages are pure, i.e. they contain
no imperative features at all. Examples: Haskell,
Miranda, Gofer.

Impure languages may have assignment-statements,
goto:s, while-loops, etc. Examples: LISP, ML, Scheme.

[6]

520—Spring 2005—24

Scheme

[7] 520—Spring 2005—24

Scheme

Functions and data share the same representation:
S-Expressions.

Scheme is an impure functional language.

I.e., Scheme has imperative features.

I.e., in Scheme it is possible to program with
side-effects .

S-expressions are constructed using dotted pairs .

Scheme is homoiconic , self-representing, i.e. programs
and data are both represented the same (as
S-expressions).

[8]

520—Spring 2005—24

Scheme — Evaluation Order

To evaluate an expression (op arg1 arg2 arg3)
we first evaluate the arguments, then apply the operator
op to the resulting values. This is known as
applicative-order evaluation.

This is not the only possible order of evaluation

In normal-order evaluation parameters to a function are
always passed unevaluated.

Both applicative-order and normal-order evaluation can
sometimes lead to extra work.

Some special forms (cond, if, etc) must use normal
order since they need to consume their arguments
unevaluated.t

[9] 520—Spring 2005—24

Scheme — Metacircular Interpreter

One way to define the semantics of a language (the
effects that programs written in the language will have),
is to write a metacircular interpreter .

I.e, we define the language by writing an interpreter for
it, in the language itself.

A metacircular interpreter for Scheme consists of two
mutually recursive functions, Eval and Apply.

[10]

520—Spring 2005—24

Scheme — Lists

Lists are heterogeneous, they can contain elements of
different types, including other lists.

(equal? L1 L2) does a structural comparison of
two lists.

(eqv? L1 L2) does a “pointer comparison”.

This is sometimes referred to as deep equivalence vs.
shallow equivalence.

> ’(1 a "hello")
(1 a "hello")
> (eqv? ’(a b c) ’(a b c))
false
> (equal? ’(a b c) ’(a b c))
true

[11] 520—Spring 2005—24

Scheme — Typing

Unlike languages like Java and C which are
statically typed (we describe in the program text what
type each variable is) Scheme is dynamically typed.
We can test at runtime what particular type of number
an atom is:

(complex? arg), (real? arg)

(rational? arg), (integer? arg)

[12]

520—Spring 2005—24

Scheme — Higher-Order Functions

A function is higher-order if

1. it takes another function as an argument, or
2. it returns a function as its result.

Functional programs make extensive use of
higher-order functions to make programs smaller and
more elegant.

We use higher-order functions to encapsulate common
patterns of computation.

[13] 520—Spring 2005—24

Haskell

[14]

520—Spring 2005—24

What is Haskell?

Haskell is statically typed (the signature of all functions
and the types of all variables are known prior to
execution);

Haskell uses lazy rather than eager evaluation
(expressions are only evaluated when needed);

Haskell uses type inference to assign types to
expressions, freeing the programmer from having to
give explicit types;

Haskell is pure (it has no side-effects).

[15] 520—Spring 2005—24

Haskell — Lazy evaluation

No expression is evaluated until its value is needed.

No shared expression is evaluated more than once; if
the expression is ever evaluated then the result is
shared between all those places in which it is used.

No shared expression should be evaluated more than
once.

[16]

520—Spring 2005—24

Haskell — Infinite data structures

Lazy evaluation makes it possible for functions in
Haskell to manipulate ‘infinite’ data structures.

The advantage of lazy evaluation is that it allows us to
construct infinite objects piece by piece as necessary

Consider the following function which can be used to
produce infinite lists of integer values:

countFrom n = n : countFrom (n+1)
? countFrom 1
[1, 2, 3, 4, 5, 6, 7, 8,ˆC{Interrupted!}]
(53 reductions, 160 cells)
?

[17] 520—Spring 2005—24

Haskell — Currying

Haskell only supports one-argument functions.
Multi-argument functions are constructed by successive
application of arguments, one at a time.

Currying is the preferred way of constructing
multi-argument functions.

The main advantage of currying is that it allows us to
define specialized versions of an existing function.

A function is specialized by supplying values for one or
more (but not all) of its arguments.

[18]

520—Spring 2005—24

Referential Transparency

[19] 520—Spring 2005—24

Referential Transparency

The most important concept of functional programming
is referential transparency.

RT means that the value of a particular expression (or
sub-expression) is always the same, regardless of
where it occurs.

RT makes functional programs easier to reason about
mathematically.

Pure functional programming languages are
referentially transparent.

[20]

520—Spring 2005—24

Referential Transparency. . .

We can evaluate it by substitution . I.e. we can replace
a function application by the function definition itself.

Expressions and sub-expressions always have the
same value, regardless of the environment in which
they’re evaluated.

The order in which sub-expressions are evaluated
doesn’t effect the final result.

Functions have no side-effects.

There are no global variables.

[21] 520—Spring 2005—24

Side Effects — Bad

Programs with side effects are hard to read and
understand.

Referential transparency — expressions without
side-effects can be executed in any order.

equational reasoning — if two expressions are ever the
same, they are always the same.

[22]

520—Spring 2005—24

Side Effects — Good

Interacting with the real world (file IO, terminal IO, GUI,
networking, etc) doesn’t seem to fit in well in the
functional paradigm.

Since, in these cases, we are actually “changing the
state of the world”, side-effect free programming is
problematic.

Haskell uses monads to sequence IO operations. See
Scott, pp. 607-609.

A monad is an Abstract Data Type that supports
sequencing.

[23] 520—Spring 2005—24

Trivial Update Problem

In pure functional languages variables never change.

If we want to change the second element of a list
[1,2,3] to 4, we have to create a new list, copying the
elements from the original list.

If we want to sort a list in a functional language we have
to create new lists, rather than sorting in-place, which is
more efficient.

Adding two matrices A← A + B will create a new
matrix, even if we’re throwing away A, and could do the
addition in-place.

Similarly, how do we construct an array of 0s without
copying the entire array for every new element?

[24]

520—Spring 2005—24

Sisal

Sisal is a functional language intended to be used for
high-performance codes (scientific programming, think
FORTRAN).

The Sisal compiler tries to verify that an updated array
will never be used again, if so, a copy need not be
made.

The Sisal compiler can remove 99-100% of all
unnecessary copy operations this way.

http://tamanoir.ece.uci.edu/projects/sisal/sisaltutorial/Tutorial.html

[25] 520—Spring 2005—24

Sisal. . .

type OneDim = array [real];

type TwoDim = array [OneDim];

function generate(n : integer returns TwoDim, TwoDim)

for i in 1, n cross j in 1, n

returns array of real(i)/real(j)

array of real(i)*real(j)

end for

end function % generate

[26]

520—Spring 2005—24

Sisal. . .

function doit(n : integer; A, B : TwoDim returns TwoDim)

for i in 1, n cross

j in 1, n

c := for k in 1, n

t := A[i,k] * B[k,j]

returns value of sum t

end for

returns array of c

end for

end function % doit

function main(n : integer returns TwoDim)

let A, B := generate(n)

in doit(n, A, B)

end let

end function % main

[27] 520—Spring 2005—24

Sisal. . .

The Sisal compiler will automatically parallelize the
code on the previous slide.

Although the code looks imperative, it is actually
functional. The compiler makes the necessary
transformations of the loops into tail-recursion.

[28]

http://tamanoir.ece.uci.edu/projects/sisal/sisaltutorial/Tutorial.html

520—Spring 2005—24

Lambda Calculus

[29] 520—Spring 2005—24

Lambda Calculus

Branch of mathematical logic. Provides a foundation for
mathematics. Describes — like Turing machines — that
which can be effectively computed.

In contrast to Turing machines, lambda calculus does
not care about any underlying “hardware” but rather
uses simple syntactic transformation rules to define
computations.

A theory of functions where functions are manipulated
in a purely syntactic way.

Lambda calculus is the theoretical foundation of
functional programming languages.

[30]

520—Spring 2005—24

Lambda Calculus — Reductions

To evaluate a lambda expression we reduce it until we
can apply no more reduction rules. There are four
principal reductions that we use:
1. α-reduction — variable renaming to avoid name

clashes in β-reductions.
2. β-reduction — function application.

3. η-reduction — formula simplification.

4. δ-reduction — evaluation of predefined constants
and functions.

[31] 520—Spring 2005—24

Lambda Calculus — Termination

Question:

Can every lambda expression be reduced to a
normal form?

Answer: No.
((λx.(x x)) (λx.(x x)))

Lambda calculus contains non-terminating reductions .

[32]

520—Spring 2005—24

Lambda Calculus — Paths

Question:

Is there more than one way to reduce a lambda
expression?

Answer: Yes.

[33] 520—Spring 2005—24

Lambda Calculus — Application Order

The leftmost redex is that redex whose λ is textually to
the left of all other redexes within the expression.

An outermost redex is defined to be a redex which is
not contained within any other redex.

An innermost redex is defined to be a redex which
contains no other redex.

A normal order reduction always reduces the leftmost
outermost β-redex (or δ-redex) first.

A applicative order reduction always reduces the
leftmost innermost β-redex (or δ-redex) first.

[34]

520—Spring 2005—24

Church-Rosser Theorem

Question:

If there is more than one reduction strategy, does
each one lead to the same normal form
expression?

Answer: Yes, if a lambda expression is in normal form, it
is unique, except for changes in bound variables.

[35] 520—Spring 2005—24

Church-Rosser Theorem. . .

Theorem:

For any lambda expressions E, F and G, if
E

∗

⇒ F and E
∗

⇒ G, there is a lambda expression
Z such that F

∗

⇒ Z and G
∗

⇒ Z.

Corollary:

For any lambda expressions E, M and N , if
E

∗

⇒M and E
∗

⇒ N , where M and N are in
normal form, M and N are variants of each other
(except for changes in variables, using
α-reductions).

[36]

520—Spring 2005—24

Church-Rosser Theorem II

Question:

Is there a reduction strategy that will guarantee
that a normal form expression will be produced, if
one exists?

Theorem:

For any lambda expressions E and N , if E
∗

⇒ N

where N is in normal form, there is a normal
order reduction from E to N .

Answer: Yes, normal order reduction will produce a
normal form lambda expression, if on exists.

[37] 520—Spring 2005—24

Church’s Theses

The effectively computable functions on the positive
integers are precisely those functions definable in
the pure lambda calculus.

Turing Machines and lambda calculus are equivalent.

Since it’s not possible to determine whether a Turing
Machine will terminate, it’s not possible to determine
whether a normal order reduction will terminate.

Pure lambda calculus has no constant — everything is
a function.

Data structures (lists), numbers, booleans, control
structures (if-expressions, recursion) can all be
constructed within a pure lambda calculus.

[38]

520—Spring 2005—24

Readings and References

Read Scott, pp. 622-623.

[39]

	Functional Programming Languages
	Functional Programming
	Functional Languages
	Functional Languagesldots
	Functional Languagesldots
	Scheme
	Scheme
	Scheme --- Evaluation Order
	Scheme --- Metacircular Interpreter
	Scheme --- Lists
	Scheme --- Typing
	Scheme --- Higher-Order Functions
	Haskell
	What is Haskell?
	Haskell --- Lazy evaluation
	Haskell --- Infinite data structures
	Haskell --- Currying
	Referential Transparency
	Referential Transparency
	Referential Transparencyldots
	Side Effects --- Bad
	Side Effects --- Good
	Trivial Update Problem
	Sisal
	Sisalldots
	Sisalldots
	Sisalldots
	Lambda Calculus
	Lambda Calculus
	Lambda Calculus --- Reductions
	Lambda Calculus --- Termination
	Lambda Calculus --- Paths
	Lambda Calculus --- Application Order
	Church-Rosser Theorem
	Church-Rosser Theoremldots
	Church-Rosser Theorem II
	Church's Theses
	Readings and References

