
520—Spring 2005—25

CSc 520

Principles of Programming
Languages

25: Types — Introduction

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—25

Why types?

Types save typing.

What does a+b mean?

In Java it could be
1. a +int b.
2. a +float b.
3. a concatstring b.
4. int2float(a) +float b.
5. a +float int2float(b).
6. int2string(a) concatstring b.

etc, all depending on the types of a and b.

[2]

520—Spring 2005—25

Why types. . . ?

In Icon variables are not given explicit types. Instead,
operations carry the types:
1. a|b means binary or on integers.
2. a||b means string concatenation.
3. a|||b means list concatenation.
Icon has lots of operators. . .

In other words, without types, we would have to be
much more explicit about which operations are
performed where.

[3] 520—Spring 2005—25

Why types. . . ?

Icon programs become a bit wordier since every
operator effectively encode the required type of the
operands.

On the other hand, it also becomes more readable
since we can see directly from the operator what
operation will be performed.

global x,y,z
procedure p()

x := x + y # integer addition
x := x || y # string concatenation
x := x ||| y # list concatenation

end

[4]

520—Spring 2005—25

Why types. . . ?

To figure out which operation is performed in a Java
program, we have to find the declarations of all
variables to find their declared type:

int x;
String y;
float z;
void p() {

x = x + 5; /* integer addition */
z = z + 5.0; /* float addition */
y = y + "X"; /* string concatenation */

}

[5] 520—Spring 2005—25

Why types. . . ?

Types prevent errors .

Types save the programmer from himself.
Types prevent us from adding a character and a
record.

int A[20];
float x;
void p() {

A[5] = x;
A[x] = 5;
x = x + A;

}

[6]

520—Spring 2005—25

Why types. . . ?

Types permit optimization . A compiler can generate
better code for a+b if it knows that both variables must
be integers, than if the exact types aren’t known until
runtime:

global a,b
procedure p() {

a = new array [20]
...
b = new array [20]
...
a = a + b /* what operation is performed here? */

}

[7] 520—Spring 2005—25

Type Systems

A type system consists of

a mechanism for defining types,

rules for type equivalence,

rules for type compatibility ,

rules for type inference.

[8]

520—Spring 2005—25

Type Systems. . .

Type equivalence determines when the types of two
values are the same:

TYPE A = ARRAY [0..10] OF CHAR;
TYPE B = ARRAY [0..10] OF CHAR;
VAR a : A;
VAR b : B;
BEGIN

a := b; (* legal? *)
END

Are the types of a and b the same?

[9] 520—Spring 2005—25

Type Systems. . .

Type compatibility determines when a value of a given
type can be used in a given context:

VAR a : float;
VAR b : int;
BEGIN

a := a + b;
END

Can you add an int and a float?

[10]

520—Spring 2005—25

Type Systems. . .

Type inference defines the type of an expression based
on its parts and surrounding context:

global a,b,c
procedure p(x)

if x = 5 then
a := x

else
a := "hello"

write(a)
end
procedure main()

p(5)
end

What type of data can be written here?
[11] 520—Spring 2005—25

Type Checking

Type checking ensures that a program obeys a
language’s type rules.

A type clash is a violation of the typing rules.

class C {
void p() {

int x = new C();
}

}

[12]

520—Spring 2005—25

Type Checking — Strong Typing

Language L is strongly typed if

⊕ is an operator in L that expects an object of type T ,
L prohibits ⊕ from accepting objects of any other
type,
and L requires an implementation (a compiler,
interpreter, etc) to enforce this prohibition.

In other words, a strongly typed language does not
allow us to perform operations on the “wrong” type of
data.

[13] 520—Spring 2005—25

Type Checking — Weak Typing

In a weakly typed language there are ways to “escape”
the type system.

In C, for example, it is possible to cast a pointer to a
float, add 3.14 to it, and cast it back to a pointer:

int main() {
int* p = (int*) malloc (sizeof(int));
float f = *((float*) &p) + 3.14;
p = (int*)(*(int *)&f);

}

Such operations are probably meaningless and a
strongly typed language would prohibit them.

[14]

520—Spring 2005—25

Type Checking — Static/Dynamic Typing

A language statically typed if type checking is done at
compile-time.

A language dynamically typed if type checking is done
at run-time.

In practice, even languages which are considered
statically typed do some checking at run-time.

Languages can usually be classified as
mostly strongly typed, mostly statically typed, etc.

[15] 520—Spring 2005—25

Terminology

Benjamin C. Pierce has said:
I spent a few weeks . . . trying to sort out the
terminology of strongly typed, statically typed,
safe, etc., and found it amazingly difficult. . . . The
usage of these terms is so various as to render
them almost useless.

It is possible to say
My language is more strongly typed than your
language.

but harder to argue that
My language is strongly typed/statically typed,
etc.

[16]

520—Spring 2005—25

Examples — Pascal

Pascal is mostly strongly and statically typed.

Untagged variant records are a loophole. They allow
us to turn a value of one type into an object of some
unrelated type.

Unlike C, array bounds are checked.

[17] 520—Spring 2005—25

Pascal – Untagged Variant Records

type rec = record
a : integer;
case boolean of

true : (x : integer);
false : (y : char);

end;

var r: rec;
begin

r.x := 55; r.y := ’A’; write(r.x);
end.

This construct is used to bypass Pascal’s strong typing.

[18]

520—Spring 2005—25

Examples — C

C is weakly and statically typed.

Pointers can be cast willy-nilly which makes it easy to
bypass the type system.

Array references are not checked:

int main() {
int A[20];
int B[20];
A[25] = 5;

}

Negative indices were used in the old days to overwrite
the operating systems.

Today, buffer overflows are how most viruses
compromise security.

[19] 520—Spring 2005—25

Examples — Ada

Ada is strongly and mostly statically typed.

Unlike Pascal, variant records must be tagged:

type Device is (Printer, Disk, Drum);
type Peripheral(Unit : Device := Disk) is record

case Unit is
when Printer => Line_Count : Integer ;
when others => Cylinder : CIndex;

end case;
end record;

[20]

520—Spring 2005—25

Examples — Ada. . .

It is, however, possible to do non-converting casts
(similar to C), but in a very explicit way:

function float2int is
new unchecked_conversion(float,integer);

...
f := float2int(i);

Some errors can’t be checked at compile-time:

I, J : Integer range 1 .. 10 := 5;
K : Integer range 1 .. 20 := 15;
I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise an exception if K>10

[21] 520—Spring 2005—25

Examples — Scheme

Scheme is completely dynamically typed, so
programmers often insert extra checks:

(define (sum l)
(cond

((null? l) 0)
((not (list? l))

(error "list expected"))
((not (number? (car l)))

(error "list of numbers expected"))
(else (+ (car l) (sum (cdr l))))

))

[22]

520—Spring 2005—25

Examples — Java

Java is strongly and mostly statically typed.

An exception is thrown here because an A-object can’t
be cast to a B-object:

class A {}
class B extends A {

int x;
}
void p() {

B b = (B) new A();
}

[23] 520—Spring 2005—25

Typing

strong
weak

static dynamic static dynamic

Pascal
C
Modula−2

Scheme
Smalltalk

Ada
Java
Haskell

typing

[24]

520—Spring 2005—25

Type Inference

In statically typed languages types are inferred in the
compiler, before the program is run:

procedure p (x : integer);
var z : real;
var c : char;
begin

write(x + z); /* convert x to real,
write a real */

write(c + z); /* type error */
end

[25] 520—Spring 2005—25

Type Inference. . .

Haskell and similar languages don’t require the
programmer to give types to variables and functions.

Instead, the compiler infers types.

Given

len [] = 0
len _:xs = 1 + len xs

the Haskell translator will infer a most general type:

len :: [a] -> Int

Haskell is strongly and statically typed, although the
programmer rarely have to provide explicit type
information.

[26]

520—Spring 2005—25

So, What is a Type?

There are three ways to think about types:
1. denotational view — a type is a set of values;
2. constructive view — a type is what we can construct

from the type constructors in the language;

3. abstraction-based view — a type denotes a data
object and a well-defined set of allowable operators
on this object.

At different times, we may look at a type in any of these
ways.

[27] 520—Spring 2005—25

Denotational View

A type T is a set of values {t0, t1, t2 . . .}.

A value v is of type T if it belongs to the set.

A variable v is of type T if it is guaranteed to always
hold a value in the set.

A char type in Pascal is the set of 128 seven-bit ASCII
characters:

{...,
"0",...,"9",...,
"A",...,"Z",...,
"a"...,"z",...}

[28]

520—Spring 2005—25

Constructive View

A Pascal type is (roughly)
type ::=

integer | real | char | boolean . . .

[expr .. expr] |

SET OF type |
ARRAY type OF type |
RECORD [field list] END

I.e., a Pascal type is either one of the built-in types, or
ones we define ourselves by composing
type constructors , such as ARRAY, RECORD, etc:

END T = RECORD
a : real;
b : ARRAY ["a".."z"] OF SET OF char;

END;
[29] 520—Spring 2005—25

Abstraction-Based View

A type is an abstract data type.

The next slides shows what the Modula-3 language
manual says about the operations that are allowed on
Words.

The allowed operations include arithmetic and logical
operations.

There is no “pointer dereferencing” operation defined,
however, so apparently this operation is not allowed.

[30]

520—Spring 2005—25

Abstraction-Based View. . .

INTERFACE Word;

TYPE T = INTEGER;

PROCEDURE Plus (x,y: T): T;

PROCEDURE Times (x,y: T): T;

PROCEDURE Minus (x,y: T): T;

PROCEDURE Divide(x,y: T): T;

PROCEDURE Mod(x,y: T): T;

PROCEDURE LT(x,y: T): BOOLEAN;

PROCEDURE LE(x,y: T): BOOLEAN;

PROCEDURE GT(x,y: T): BOOLEAN;

PROCEDURE GE(x,y: T): BOOLEAN;

PROCEDURE And(x,y: T): T;

PROCEDURE Or (x,y: T): T;

PROCEDURE Xor(x,y: T): T;

PROCEDURE Not (x: T): T;

PROCEDURE Shift(x: T; n: INTEGER): T;

PROCEDURE Rotate(x: T; n: INTEGER): T;

PROCEDURE Extract(x: T; i, n: CARDINAL): T;

PROCEDURE Insert(x: T; y: T; i, n: CARDINAL): T;

END Word.
[31] 520—Spring 2005—25

Readings and References

Read Scott, pp.319–322.

[32]

	Why types?
	Why typesldots ?
	Why typesldots ?
	Why typesldots ?
	Why typesldots ?
	Why typesldots ?
	Type Systems
	Type Systemsldots
	Type Systemsldots
	Type Systemsldots
	Type Checking
	Type Checking --- Strong Typing
	Type Checking --- Weak Typing
	Type Checking --- Static/Dynamic Typing
	Terminology
	Examples --- Pascal
	Pascal -- Untagged Variant Records
	Examples --- C
	Examples --- Ada
	Examples --- Adaldots
	Examples --- Scheme
	Examples --- Java
	Typing
	Type Inference
	Type Inferenceldots
	So, What is a Type?
	Denotational View
	Constructive View
	Abstraction-Based View
	Abstraction-Based Viewldots
	Readings and References

