CSc 520

Principles of Programming
Languages
26: Types — Classification

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science

University of Arizona

Copyright (© 2005 Christian Collberg

—Spring 2005—26 [1]

Enumerable Types

Also called discrete types or ordinal types.
Discrete types are countable, or 1-to-1 with the integers.
» Examples:

1. integer

boolean
char
subranges

o~ wbd

enumeration types

520—Spring 2005—26 [2]

Scalar Types

Also called simple types.
The scalar types include:
1. discrete types

2. real
3. rational
4. complex

 Cnhrinme ONNE 25°0 2l

Composite Type_s

Also called constructed types.

They are created by applying type constructors to
other, simpler, types.

#® The composit types include:
1. records

variant records

arrays

sets

pointers

lists

files

NOo gk

Y9N Chrrine O2NNE H2°0 r1

Types— Overview

composite types

poi nter scalar types

discrete types
i nt eger
bool ean
char

subr ange
enuneratio

rational

variant record

Discreet Types — Enumerations

Pascal, Ada, Modula-2, C have some variant of
enumeration types.

C’s enumerations are just syntactic sugar for integer
constants.

In Pascal and Ada, enumerations are real types,
incompatible with other types.

In Ada and C, enumeration values can be user
specified.

TYPE Col or = (white, bl ue, yell ow, green,red);
TYPE Fruits = (appl e=4, pear =9, kunguat =99) ;
VAR A : ARRAY Color OF Fruit;

FOR c := white TO red DO

IF ¢ !'=vyellow THEN Al c] := appl €;
—Spring 2005—26 (5] 520—Spring 2005—26 [6]
Discreet Types — Subranges
#® Subranges can be used to force additional runtime
checks.
#® Some languages use subrange types as array index
types. Structured Types

TYPE S1 [0..10];

TYPE S2 ['a .. z2"];

TYPE Col or = (white, blue,yellow green,red);
TYPE S3 = [Dblue..green];

TYPE A = ARRAY S3 OF | NTEGER;

VAR X : S3 := white; (* < error *)

 Cnhrinme ONNE 25°0 -1

Y9N Chrrine O2NNE H2°0 rol

Arr‘ays — Storage Layput |

Most languages lay out arrays in row-major order.
FORTRAN uses column-major.

0| AL o | AL
1| A[L,2] 1| A2,1]
A[1,1] | A[L,2] 2 | Al2,1] 2 | A[31]
A2,1] | A[2,2] 3| Al2,2] 3 | Al4,1]
A[3.1] | A[3,2] 4 | A[3,1] 4 | Al1,2]
Al4,1] | A[4,2] 5 | A[3,2] 5 | Al2,2]
6 | A4,1] 6 | A[3,2]
7 | A4,2] 7 | Al4,2]
Matrix Row Major Column Major
—Spring 2005—26 [9]

Array Indexing — 1 Dimensions

» How do we compute the address (L-value) of the n:th
element of a 1-dimensional array?

® Ao, IS A's element-size, A q44- IS ItS base address.

VAR A : ARRAY [I .. h] OF T;

L — VAL(A[1))

Aaaar + (i — 1) * Aersz
= Awaar + (I % Bersz) + 7 % Aersz
C Aadar + (1% Aersz)
L—VAL(A[i]) = C+Hix*Aqs:

® Note that C' can be computed at compile-time.

520—Spring 2005—26 [10]

Array Indexing — 2 Dimensions

VAR A : ARRAY [Ily.. h{][l2..hs] OF T;

wy = h;—10;+1
wyg = hg—Ilsg+1
L —VAL(A[i1,i2]) = Aagar + (1 — 1) * w2 + iz + [2) * Ae1s
= Aaaar + (91 % w2 +i2) * Ae1s, —
(l1 * wa — l3) * Ae1sz
C = Aagar — (Il x w2 — I2) * Ac1sy

L — VAL(A[iq,d2])

(il * Wg + 22) * Ag1sz + C

#® (' can be computed at compile-time.

 Cnhrinme ONNE 25°0 rM11

Array Indexing —n Dimensions

VAR A . ARRAY [I[1.. h] [l,..hy] OF T,

wy = hp —lp+1

C

Apaar — ((+- - (Iy xwo + 12) * w3 +13) -+) x wy + 1) * Aersz

L — VAL(A[i1,i2, ..., 0p]) =
(("'(il*w2+i2>*w3+i3)"')*wn+in)*Aelsz+C

Y9N Chrrine O2NNE H2°0 Mo

Record Types

Pascal, C, Modula-2, Ada and other languages have
variant records (C’s union type):

TYPE Rl = RECORD tag : (red,blue, green);

CASE tag OF
red : r @ REAL; |
blue : i : [INTEGER |
ELSE ¢ : CHAR
END;
END;
Depending on the t ag value R1 has a real, integer, or

char field.

The size of a variant part is the max of the sizes of its
constituent fields.

—Spring 2005—26 [13]

Record Types...

Oberon has extensible record types:
TYPE R3 = RECORD

a ;. | NTECER;
END;
TYPE R4 = (R3) RECORD
b : REAL;
END;

R4 has both the a and the b field.

® Extensible records are similar to classes in other
languages.

520—Spring 2005—26 [14]

Pointer Types

In order to build recursive structures, most languages
allow some way of declaring recursive types. These are
necessary in order to construct linked structures such
as lists and trees:

TYPE P = PO NTER TO R,
TYPE R = RECORD
data : | NTEGER,
next P;
END;

Note that P is declared before its use. Languages such
as Pascal and C don't allow forward declarations, but
make an exception for pointers.

 Cnhnrine ONNE 25°0 rMci

Procedure Types |

C, Modula-2, and other languages support procedure
types. You can treat the address of a procedure like any
other object.

Languages differ in whether they allow procedures
whose address is taken to be nested or not. (Why?)

TYPE P = PROCEDURE(x: | NTEGER; VAR Y: CHAR) : REAL,
VAR z : P; VARc : CHAR VAR T : REAL
PROCEDURE M (x: | NTECER; VAR Y: CHAR) : REAL

BEGQ N - -END;
BEG N
zZ M /* z holds the address of M */

r
END.

Y9N Cnhrrina O2°NNE D50 Moel

z(44,c);

Class Typ\‘es

Java’s classes are just pointer to record types. Some
languages (Object Pascal, Oberon, MODULA-3) define

classes just like records.
» Nore about classes later.

r : REAL; // Add another field.

TYPE C1 = CLASS
X | NTEGER;
void M) { -}
void N() { -+ }
END;
TYPE C2 = CLASS EXTENDS Cl
void M) { -}
void Q) { -k
END;

—Spring 2005—26

(17]

/!l Overrides Cl1.M

/! Add anot her nethod.

Set Types

Pascal and Modula-2 support sets of ordinal types.
#® Sets are implemented as bitvectors.

Many implementations restrict the size of a set to 32
(the size of a machine word), or 256 (so you can
declare a set of char).

type letset = set of "A .. 'z’;
var x, y, z, w |letset;
begi n

X
Z
zZ .

["A.7Z0a]l yi=["a.."2'];
X +y; (* set union *)
X *y; (* set intersection *)
X -y, (* set difference *)
if "A inz then ...; (* set menbership *)
end.
520—Spring 2005—26 [18]

W

Readings and References

® Read Scott, pp.323-330.

 Cnhrinme ONNE 25°0

Maol

	Enumerable Types
	Scalar Types
	Composite Types
	Types --- Overview
	Discreet Types --- Enumerations
	Discreet Types --- Subranges
	Structured Types
	Arrays -- Storage Layout
	Array Indexing -- 1 Dimensions
	Array Indexing -- 2 Dimensions
	Array Indexing -- n Dimensions
	Record Types
	Record Typesldots
	Pointer Types
	Procedure Types
	Class Types
	Set Types
	Readings and References

