
520—Spring 2005—28

CSc 520

Principles of Programming
Languages

28: Control Flow — Introduction

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—28

Control Flow

We need some way of ordering computations:

sequencing

selection

iteration

procedural abstraction — being able to treat a
collection of other control constructs as a single unit, a
subroutine.

recursion

concurrency

nondeterminacy — being able to explcitly state that the
ordering between two statements is uspecified, and,
possibly should be selected randomly/fairly.

[2]

520—Spring 2005—28

Control Flow — Paradigms

Functional languages — recursion and selection are
important, iteration and sequencing not.

Procedural languages — iteration, sequencing,
selection are important, recursion not.

Logic languages — the programmer gives rules that
restrict control flow, the interpreter deduces an
execution ordering that satisifes these rules.

[3] 520—Spring 2005—28

Operators

[4]

520—Spring 2005—28

Prefix, Infix, Postfix

Languages use prefix, infix, or postfix notation for
operators in expressions.

This means that the operator comes before, among, or
after its operands.

Lisp/Scheme uses Cambridge Polish notation (a
variant of prefix):

(* (+ 5 6) 7)

Postscript and Forth use postfix notation.

Smalltalk uses infix notation.

[5] 520—Spring 2005—28

Smalltalk — Binary Messages

A binary message M to receiver R with argument A has
the syntax

R M A

For example:

8 + 9

This sends the message + to the object 8 with the
argument 9.

[6]

520—Spring 2005—28

Smalltalk — Keyword Messages

A keyword message M to receiver R with arguments
A1, A2, A3, . . . has the syntax

R M1: A1 M2: A2 M3: A3 ...

For example:

DeannaTroi kiss: cheek how: tenderly

This sends the message kiss:how: to the object
DeannaTroi with the arguments cheek and
tenderly. In Java we would have written:

DeannaTroi.kisshow(cheek,tenderly)

[7] 520—Spring 2005—28

Operator Precedence

The precedence of an operator is a measure of its
binding power, i.e. how strongly it attracts its operands.

Usually ∗ has higher precedence than +:

4 + 5 ∗ 3

means
4 + (5 ∗ 3),

not
(4 + 5) ∗ 3.

We say that ∗ binds harder than +.

[8]

520—Spring 2005—28

Operator Associativity

The associativity of an operator describes how
operators of equal precedence are grouped.

+ and − are usually left associative:

4 − 2 + 3

means
(4 − 2) + 3 = 5,

not
4 − (2 + 3) = −1.

We say that + associates to the left.

ˆ associates to the right:

2ˆ3ˆ4 = 2ˆ(3ˆ4).
[9] 520—Spring 2005—28

Case Study — C

C has so many rules for precedence and associativity
that most programmers don’t know them all.

See the table on the next slide.

[10]

520—Spring 2005—28

Case Study — C. . .

OPERATOR KIND PREC ASSOC

a[k] Primary 16
f(· · ·) Primary 16
. Primary 16
-> Primary 16

a++, a-- Postfix 15

++a, --a Unary 14
˜ Unary 14
! Unary 14
- Unary 14
& Unary 14
* Unary 14

OPERATOR KIND PREC ASSOC

*, /, % Binary 13 Left
+, - Binary 12 Left
<<, >> Binary 11 Left
<, >, <=, >= Binary 10 Left
== != Binary 9 Left
& Binary 8 Left
ˆ Binary 7 Left
| Binary 6 Left
&& Binary 5 Left
|| Binary 4 Left

? : Ternary 3 Right

=, +=, -=, *=,
/=, %=, <<=,
>>=, &=, ˆ=, |=

Binary 2 Right

, Binary 1 Left

[11] 520—Spring 2005—28

Variables

[12]

520—Spring 2005—28

Value vs. Reference Model

l-value — an expression that denotes a location, such
as the left-hand side in x:=..., x[i]:=...,
x.a[i]->v:=....

r-value — an expression that denotes a value, such as
the right-hand side in ...:=x, ...:=x[i],
...:=x.a[i]->v, ...:=3+x.

Pascal, C, Ada use a value model of variables. In
...:=x, x refers to the value stored in x.

Clu (and other languages) use a reference model for
variables. In ...:=x, x is a reference to the value
stored in x.

[13] 520—Spring 2005—28

Value vs. Reference Model. . .

In Pascal, after the statements

b := 2;
c := b;

both b and c would hold the value 2. In Clu, b and c
would both point to the same object, which contains the
value 2.

Java uses a value model for int, float, etc, but a
reference model for String. Hence

int i,j;
String s,t;
if (i==j) ...
if (s==t) ...

can be confusing for novel programmers.

[14]

520—Spring 2005—28

Expressions

[15] 520—Spring 2005—28

Order of Evaluation

Many languages allow the compiler to reorder
operations in an expression, for efficiency.

Java requires strict left-to-right evaluation. Why?

If the expression (b,c,d are 32-bit ints)

b-c+d

is reordered as

b+d-c

then an overflow can occur if b+d doesn’t fit in an int.

[16]

520—Spring 2005—28

Order of Evaluation. . .

Let a,b,c be 32-bit floats, where a is small, b,c are
large, and b=-c.

Then the expression

(a+b)+c

might evaluate to 0 (due to a loss of information), while

a+(b+c)

would evaluate to a.

[17] 520—Spring 2005—28

Case Study — Pascal

Pascal does not use short-circuit evaluation . Hence,
this makes for problems:

if (x<>0) and (y/x > 5) then

Pascal has non-intuitive precedence:

4 > 8 or 11 < 3

is parsed as

4 > (8 or 11) < 3

Hence, it becomes necessary to insert parenthesis.

[18]

520—Spring 2005—28

Control-Flow Statements

[19] 520—Spring 2005—28

Statement vs. Expression Orientation

In Pascal, Ada, Modula-2, if, while, etc. are
statements . This means that they are executed for their
side-effects only, and return no value.

In Algol68 if, while, etc. are expressions, they can
have both side-effects and return values:

begin
x := if b<c then d else e;
y := begin f(b); g(c) end;
z := while b<c do g(c) end;
2+3

end

This compound block returns 5.

[20]

520—Spring 2005—28

Unstructured Control-Flow

In the early days of FORTRAN, there were no
structured control-flow statements (these were
introduced in Algol 60).

Instead, programmers built up structured ifs, whiles,
etc, using gotos:

IF a .LT. B GOTO 10
...

GOTO 20
10: ...
20:

This is an if-then-else-statement.

[21] 520—Spring 2005—28

Case Study — Pascal: goto

Pascal has no exception handling mechanism. Gotos
were the only way of, say, jumping to the end of the
program on an unrecoverable error.

Labels have to be integers and have to be declared.

goto label;

...

label:

procedure P ();
label 999;

...
goto 999;

...
999:
end;

[22]

520—Spring 2005—28

Statements — Selection

[23] 520—Spring 2005—28

Case Study — Pascal: if

if boolean expression then
statement

else
if boolean expression then

statement
else

begin
statement
statement
statement

end

The else is always matched with the closest nested if.

[24]

520—Spring 2005—28

Case Study — Modula-2: if

The ELSIF part of an IF-statement in Modula-2 is a
convenient addition from Pascal:

IF boolean expression THEN
statement-sequence

ELSIF boolean expression THEN
statement-sequence

ELSIF boolean expression THEN
statement-sequence

ELSE
statement-sequence

END

[25] 520—Spring 2005—28

Case Study — Pascal: case

case ordinal expression of
list of cases: statement;
list of cases: statement;
list of cases: statement;
otherwise statement

end;

otherwise is optional.

The list of cases looks like this: 1,2,7..9. I.e. it can
contain ranges.

case-statements can be implemented as nested ifs,
jump-tables (most common), or hash-tables, depending
on what is most efficient.

[26]

520—Spring 2005—28

Case Study — C: case

In 1990 AT&T’s long distance service fails for nine hours
due to a wrong break statement in a C program.

switch (e) {
0 :
1 : S1;

break;
2 : S2; ⇐ Really meant to fall-through here?!?!

3 : S3;
break;

}

C’s design allows several cases to share the same
statement (as 0 and 1 do above).

[27] 520—Spring 2005—28

Case Study — FORTRAN: goto

In FORTRAN, you can simulate a case statement using
computed gotos :

GOTO (15, 20, 30) I
15: ...
20: ...
30: ...

If I=1, we’ll jump to 15; if I=2, we’ll jump to 20; if it’s 3,
we’ll jump to 30, otherwise we’ll do nothing.

[28]

520—Spring 2005—28

Statements — Iteration

[29] 520—Spring 2005—28

Case Study — Pascal: for

for index := start to stop do
statement;

for index := start downto stop do
statement;

The index must be declared outside the loop.

Only ordinal datatypes are allowed.

You can only increment the index variable with ±1!

[30]

520—Spring 2005—28

Case Study — Modula-2: FOR

Modula-2 generalizes Pascal’s for-loop, so that it’s
possible to iterate by an arbitrary amount:

(* The BY-part is optional.
step must be a constant.*)

FOR i := from TO to [BY step] DO
statement-sequence

END

step still has to be constant, though!

[31] 520—Spring 2005—28

Case Study — Modula-3: FOR

Modula-3, finally, provides a FOR-loop in its full
generality:

FOR id := first TO last BY step DO
S

END

id is a read-only variable with the same type as first
and last.

first, last and step are executed once.

step can be a run-time expression, not just a constant.
(At least, I think so — Scott says otherwise, and the
manual is silent. Anyone care to check what the
compiler thinks?)

[32]

520—Spring 2005—28

Case Study — Modula-3: FOR

FOR id := first TO last BY step DO
S

END

If step is negative, the loop iterates downwards.

It is non-trivial to implement a fully general FOR-loop.
See the next slide for how Modula-3’s FOR-statement is
translated.

The index variable id is automatically defined by the
loop.

In Pascal/Modula-2, the programmer had to define it
herself outside the loop. This lead to the question what
value will id have after the end of the loop? Either the
compiler got it wrong, or the programmer got it wrong.

[33] 520—Spring 2005—28

Case Study — Modula-3: FOR. . .

FOR id := first TO last BY step DO S END

⇓ ⇓ ⇓

VAR i := ORD(first); done := ORD(last); delta := step;

BEGIN

IF delta >= 0 THEN

WHILE i <= done DO

WITH id=VAL(i,T) DO S END; INC(i,delta);

END

ELSE

WHILE (i >= done DO

WITH id=VAL(i,T) DO S END; INC(i,delta);

END END END

[34]

520—Spring 2005—28

Case Study — Pascal: loops

while boolean expression do
statement;

repeat
statement;
statement;

until boolean expression;

Note the asymmetry: the while statement body can only
contain one statement.

[35] 520—Spring 2005—28

Case Study — Modula-2: loops

Modula-2 adds an infinite loop:

LOOP
statement-seq (* EXIT can occur here. *)

END

This makes it convenient to exit a loop in the middle:

LOOP
....
IF ... THEN EXIT;
....

END

[36]

520—Spring 2005—28

Case Study — Algol 60

Algol 60 has one loop construct:
for ::= for id := list do stat

list ::= enum { , enum }
enum ::= expr

expr step expr until expr

expr while condition

id takes on values specified by a sequence of
enumerators.

Each expression is re-evaluated at the top of the loop.

[37] 520—Spring 2005—28

Case Study — Algol 60. . .

Each of the following is equivalent:

for i := 1, 2, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i := i, i + 2 while i < 10 do ...

This generality is usually overkill. . .

[38]

520—Spring 2005—28

Recursion

[39] 520—Spring 2005—28

Tail Recursion

A function is tail-recursive if there is no more work to be
done after the recursive call.

Tail-recursive functions are important because they can
be easily be made iterative — no stack space needs to
be allocated dynamically.

For tail-recursive functions the compiler can reuse the
space of the current stack frame instead of allocating a
new one for the recursive call.

[40]

520—Spring 2005—28

Tail Recursion. . .

int gcd(int a, int b) {
if (a == b) return a;
else if (a > b) return gcd(a-b,b);
else return gcd(a,b-a);

}
⇓

int gcd(int a, int b) {
start:

if (a == b) return a;
else if (a > b) {a=a-b; goto start; }
else {b=b-a; goto start; }

}

[41] 520—Spring 2005—28

Tail Recursion. . .

You can often transform a non-tail-recursive function
into a tail-recursive one.

The idea is to pass a continuation of the work that is to
be done after the call as a parameter to the call.

This is called continuation-passing style (CPS).

The next slide shows how the factorial function has
been made tail-recursive using the CPS transformation.

[42]

520—Spring 2005—28

Tail Recursion. . .

(define (fact n)
(if (= n 1)

1
(* n (fact (- n 1)))))

(define (fact-cps n C)
(if (= n 1)

(C 1)
(fact-cps (- n 1) (

lambda(v) (C (* n v))))))

(fact-cps 5 (lambda(v) (display v)))

[43] 520—Spring 2005—28

Readings and References

Read Scott, pp. 249–287, 294–303, 303–310

[44]

	Control Flow
	Control Flow --- Paradigms
	Operators
	Prefix, Infix, Postfix
	Smalltalk --- Binary Messages
	Smalltalk --- Keyword Messages
	Operator Precedence
	Operator Associativity
	Case Study --- C
	Case Study --- Cldots
	Variables
	Value vs. Reference Model
	Value vs. Reference Modelldots
	Expressions
	Order of Evaluation
	Order of Evaluationldots
	Case Study --- Pascal
	Control-Flow Statements
	Statement vs. Expression Orientation
	Unstructured Control-Flow
	Case Study --- Pascal: goto
	Statements --- Selection
	Case Study --- Pascal: if
	Case Study --- Modula-2: if
	Case Study --- Pascal: case
	Case Study --- C: case
	Case Study --- FORTRAN: goto
	Statements --- Iteration
	Case Study --- Pascal: for
	Case Study --- Modula-2: FOR
	Case Study --- Modula-3: FOR
	Case Study --- Modula-3: FOR
	Case Study --- Modula-3: FORldots
	Case Study --- Pascal: loops
	Case Study --- Modula-2: loops
	Case Study --- Algol 60
	Case Study --- Algol 60ldots
	Recursion
	Tail Recursion
	Tail Recursionldots
	Tail Recursionldots
	Tail Recursionldots
	Readings and References

