
520—Spring 2005—29

CSc 520

Principles of Programming
Languages

29: Control Flow — Iterators

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—29

Iterators

FOR-loops are typically used to iterate over some range
of enumerable values.

Iterators are used to iterate over an abstraction,
such as the elements of a list, the nodes of a tree, the
edges of a graph, etc.

For example,

for n := tree_nodes_in_inorder(T) do
print n

end

[2]

520—Spring 2005—29

Iterators in Java

In object-oriented languages it is typical to create an
enumeration object which contains the current state of
the iteration:

Enumeration iter = new Tree.inorder(T);
while (iter.hasNextElement()) {

Node n = (Node) iter.nextElement();
n.print();

}

This is not as clean as in languages with built-in support
for iterators.

[3] 520—Spring 2005—29

CLU-Style Iterators

Iterators were pioneered by CLU, a (dead) class-based
language from MIT.

setsum = proc(s:intset) returns(int)
sum : int := 0
for e:int in intset$elmts(s) do

sum := sum + e
end
return sum

end setsum

[4]

520—Spring 2005—29

CLU-style Iterators. . .

Procedure setsum computes the sum of the elements
in a set of integers.

setsum iterates over an instance of the abstract type
intset using the intset$elmts iterator.

Each time around the loop, intset$elmts yields a
new element, suspends itself, and returns control to the
loop body.

[5] 520—Spring 2005—29

CLU-style Iterators. . .

intset = cluster is create,elmts,...
rep = array[int]
elmts = iter(s:cvt) yields(int)

i : int := rep$low(s)
while i <= rep$high(s) do

yield (s[i])
i = i + 1

end
end elmts

end intset

[6]

520—Spring 2005—29

CLU-style Iterators. . .

A CLU cluster is a typed module; a C++ class, but
without inheritance.

CLU makes a clear distinction between the abstract
type (the cluster as seen from the outside), and its
representation (the cluster from the inside). The rep
clause defines the relationship between the two.

[7] 520—Spring 2005—29

CLU-style Iterators. . .

elmts = iter(s:cvt) yields(int)
i : int := rep$low(s)
while i <= rep$high(s) do

yield (s[i])
i = i + 1

end
end elmts

[8]

520—Spring 2005—29

CLU-style Iterators. . .

s:cvt says that the operation converts its argument from
the abstract to the representation type.

rep$low and rep$high are the bounds of the array
representation.

yield returns the next element of the set, and then
suspends the iterator until the next iteration.

Iterators may be nested and recursive.

[9] 520—Spring 2005—29

CLU-style Iterators. . .

array = cluster [t: type] is ...
elmts = iter(s:array[t]) yields(t)

for i:int in int$from to(
array[t]$low(a),
array[t]$high(a)) do

yield (a[i])
end

end elmts
end array
elmts = iter(s:cvt) yields(int)

for i:int in array$elmts(s) do
yield (i)

end
end elmts

[10]

520—Spring 2005—29

CLU-style Iterators. . .

Iterators may invoke other iterators.

CLU supports constrained generic clusters (like Ada’s
generic packages, only better).

[11] 520—Spring 2005—29

CLU Iterators — Example A

Here’s an example of a CLU iterator that generates all
the integers in a range:

for i in from_to_by(first,last,step) do
...

end

[12]

520—Spring 2005—29

CLU Iterators — Example A. . .

from_to_by = iter(from,to,by:int) yields(int)
i : int := from
if by> 0 then

while i <= to do
yield i
i +:= by

end
else

while i >= to do
yield i
i +:= by

end
end

[13] 520—Spring 2005—29

CLU Iterators — Example B

Here’s an example of a CLU iterator that generates all
the binary trees of n nodes.

for t: bin_tree in bin_tree$tree_gen(n) do
bin_tree$print(t)

end

[14]

520—Spring 2005—29

CLU Iterators — Example B. . .

bin_tree = cluster ...

node = record [left,right : bin_tree]

rep = variant [some : node, empty : null]

...

tree_gen = iter (k : int) yields (cvt)

if k=0 then

yield red$make_empty(nil)

else

for i:int in from_to(1,k) do

for l : bin_tree in tree_gen(i-1) do

for r : bin_tree in tree_gen(k-i) do

yield rep$make_some(node${l,r})

end

end

end

end tree_gen

...

end

[15] 520—Spring 2005—29

Iterator Implementation

Iter1 = iter (...)
... yield x
(1) ...
end

end Iter1
P = proc (...)

for i in Iter1(...) do
S

end
end P

[16]

520—Spring 2005—29

Iterator Implementation

Calling an iterator is the same as calling a procedure.
Arguments are transferred, an activation record is
constructed, etc.

Returning from an iterator is also the same as returning
from a procedure call.

[17] 520—Spring 2005—29

Iterator Implementation. . .

Resume frame
for Iter1

Activation
Record for
Iter 1

Activation
record for P resume link:

return address: (1)

[18]

520—Spring 2005—29

Iterator Implementation. . .

When an iterator yields an item, its activation record
remains on the stack. A new activation record (called a
resume frame) is added to the stack.

The resume frame contains information on how to
resume the iterator. The return address-entry in the
resume frame contains the address in the iterator body
where execution should continue when the iterator is
resumed.

[19] 520—Spring 2005—29

Nested Iterators

for i in Iter1(...) do
for j in Iter2(...) do

S
end

end

[20]

520—Spring 2005—29

Nested Iterators. . .

Since iterators may be nested, a procedure may have
several resume-frames on the stack.

A new resume frame is inserted first in the procedure’s
iterator chain.

At the end of the for-loop body we resume the first
iterator on the iterator chain:
1. The first resume frame is unlinked.
2. We jump to the address contained in the removed

frame’s return address entry.

[21] 520—Spring 2005—29

Nested Iterators. . .

return address: (1)

resume link: /

resume link:

AR for P

return address: (2)

resume link:

Resume AR for Iter2

Resume AR for Iter1

AR for Iter2

AR for Iter1

return address: (1)

resume link: /

resume link:

AR for P

When we get to the end

of Iter2’s body we

return as from a normal
call.

Iter1 may generate a

new item and P may

again start up Iter2.

Resume AR for Iter1

AR for Iter1

[22]

520—Spring 2005—29

Simpler Iterator Implementation

Iter = iter (...)
while ... do

yield x
end

end

begin
for i in Iter(...) do

print(i);
end

end

⇓

[23] 520—Spring 2005—29

Simpler Iterator Implementation. . .

PROCEDURE Iter (
Success, Fail : LABEL;
VAR Resume : LABEL; VAR Result : T);

BEGIN
WHILE ... DO

ResumeLabel:
Result := x;
Resume := ADDR(ResumeLabel);
GOTO Success

END;
GOTO Fail;

END

[24]

520—Spring 2005—29

Simpler Iterator Implementation. . .

VAR Result : T;
VAR Resume : LABEL;
BEGIN

Iter(ADDR(SuccesLabel), ADDR(FailLabel),
Resume, Result);

SuccessLabel:
WRITE Result;
GOTO Resume;
FailLabel:

END;

[25] 520—Spring 2005—29

Icon Generators

Procedures are really generators; they can return 0, 1, or a
sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and
makes itself ready to possibly generate more values.

procedure To(i,j)
while i <= j do {

suspend i
i+:= 1

}
end

[26]

520—Spring 2005—29

Readings and References

1. Read Scott, pp. 287–294.

2. Russell R. Atkinson, Barbara H. Liskov, and Robert W.
Scheifler: Aspects of Implementing CLU, Proceedings
ACM National Conference, pp. 123–129, Dec, 1978.

3. Murer, Omohundro, Szyperski: Sather Iters:
Object-Oriented Iteration Abstraction:
ftp://ftp.icsi.berkeley.edu/pub/techreports/1993/tr-93-045.ps.gz

4. Todd A. Proebsting: Simple Translation of
Goal-Directed Evaluation, PLDI’97, pp. 1–6. This paper
describes an efficient implementation of Icon iterators.

[27] 520—Spring 2005—29

Summary

Sather (a mini-Eiffel) has adopted an iterator concept
similar to CLU’s, but tailored to OO languages.

Iterators function (and can be implemented as)
coroutines. Smart compilers should, however, take care
to implement “simple” iterators in a more direct way
(See the Sather paper).

Inline expansion of iterators may of course be helpful,
but the same caveats as for expansion of procedures
apply: code explosion, cache overflow, extra
compilation dependencies.

[28]

ftp://ftp.icsi.berkeley.edu/pub/techreports/1993/tr-93-045.ps.gz

	Iterators
	Iterators in Java
	CLU-Style Iterators
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU-style Iteratorsldots
	CLU Iterators --- Example A
	CLU Iterators --- Example Aldots
	CLU Iterators --- Example B
	CLU Iterators --- Example Bldots
	Iterator Implementation
	Iterator Implementation
	Iterator Implementationldots
	Iterator Implementationldots
	Nested Iterators
	Nested Iteratorsldots
	Nested Iteratorsldots
	Simpler Iterator Implementation
	Simpler Iterator Implementationldots
	Simpler Iterator Implementationldots
	Icon Generators
	Readings and References
	Summary

