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Iterators

FOR-loops are typically used to iterate over some range
of enumerable values.

Iterators are used to iterate over an abstraction,
such as the elements of a list, the nodes of a tree, the
edges of a graph, etc.

For example,

for n := tree_nodes_in_inorder(T) do
print n

end
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Iterators in Java

In object-oriented languages it is typical to create an
enumeration object which contains the current state of
the iteration:

Enumeration iter = new Tree.inorder(T);
while (iter.hasNextElement()) {

Node n = (Node) iter.nextElement();
n.print();

}

This is not as clean as in languages with built-in support
for iterators.
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CLU-Style Iterators

Iterators were pioneered by CLU, a (dead) class-based
language from MIT.

setsum = proc(s:intset) returns(int)
sum : int := 0
for e:int in intset$elmts(s) do

sum := sum + e
end
return sum

end setsum

[4]
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CLU-style Iterators. . .

Procedure setsum computes the sum of the elements
in a set of integers.

setsum iterates over an instance of the abstract type
intset using the intset$elmts iterator.

Each time around the loop, intset$elmts yields a
new element, suspends itself, and returns control to the
loop body.
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CLU-style Iterators. . .

intset = cluster is create,elmts,...
rep = array[int]
elmts = iter(s:cvt) yields(int)

i : int := rep$low(s)
while i <= rep$high(s) do

yield (s[i])
i = i + 1

end
end elmts

end intset

[6]
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CLU-style Iterators. . .

A CLU cluster is a typed module; a C++ class, but
without inheritance.

CLU makes a clear distinction between the abstract
type (the cluster as seen from the outside), and its
representation (the cluster from the inside). The rep
clause defines the relationship between the two.
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CLU-style Iterators. . .

elmts = iter(s:cvt) yields(int)
i : int := rep$low(s)
while i <= rep$high(s) do

yield (s[i])
i = i + 1

end
end elmts

[8]
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CLU-style Iterators. . .

s:cvt says that the operation converts its argument from
the abstract to the representation type.

rep$low and rep$high are the bounds of the array
representation.

yield returns the next element of the set, and then
suspends the iterator until the next iteration.

Iterators may be nested and recursive.
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CLU-style Iterators. . .

array = cluster [t: type] is ...
elmts = iter(s:array[t]) yields(t)

for i:int in int$from to(
array[t]$low(a),
array[t]$high(a)) do

yield (a[i])
end

end elmts
end array
elmts = iter(s:cvt) yields(int)

for i:int in array$elmts(s) do
yield (i)

end
end elmts
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CLU-style Iterators. . .

Iterators may invoke other iterators.

CLU supports constrained generic clusters (like Ada’s
generic packages, only better).
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CLU Iterators — Example A

Here’s an example of a CLU iterator that generates all
the integers in a range:

for i in from_to_by(first,last,step) do
...

end

[12]
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CLU Iterators — Example A. . .

from_to_by = iter(from,to,by:int) yields(int)
i : int := from
if by> 0 then

while i <= to do
yield i
i +:= by

end
else

while i >= to do
yield i
i +:= by

end
end
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CLU Iterators — Example B

Here’s an example of a CLU iterator that generates all
the binary trees of n nodes.

for t: bin_tree in bin_tree$tree_gen(n) do
bin_tree$print(t)

end

[14]

520—Spring 2005—29

CLU Iterators — Example B. . .

bin_tree = cluster ...

node = record [left,right : bin_tree]

rep = variant [some : node, empty : null]

...

tree_gen = iter (k : int) yields (cvt)

if k=0 then

yield red$make_empty(nil)

else

for i:int in from_to(1,k) do

for l : bin_tree in tree_gen(i-1) do

for r : bin_tree in tree_gen(k-i) do

yield rep$make_some(node${l,r})

end

end

end

end tree_gen

...

end
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Iterator Implementation

Iter1 = iter ( ... )
... yield x
(1) ...
end

end Iter1
P = proc ( ... )

for i in Iter1(...) do
S

end
end P

[16]
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Iterator Implementation

Calling an iterator is the same as calling a procedure.
Arguments are transferred, an activation record is
constructed, etc.

Returning from an iterator is also the same as returning
from a procedure call.
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Iterator Implementation. . .

Resume frame
for Iter1

Activation
Record for
Iter 1

Activation
record for P resume link:

return address: (1)
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Iterator Implementation. . .

When an iterator yields an item, its activation record
remains on the stack. A new activation record (called a
resume frame) is added to the stack.

The resume frame contains information on how to
resume the iterator. The return address-entry in the
resume frame contains the address in the iterator body
where execution should continue when the iterator is
resumed.
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Nested Iterators

for i in Iter1(...) do
for j in Iter2(...) do

S
end

end

[20]
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Nested Iterators. . .

Since iterators may be nested, a procedure may have
several resume-frames on the stack.

A new resume frame is inserted first in the procedure’s
iterator chain.

At the end of the for-loop body we resume the first
iterator on the iterator chain:
1. The first resume frame is unlinked.
2. We jump to the address contained in the removed

frame’s return address entry.
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Nested Iterators. . .

return address: (1)

resume link: /

resume link:

AR for P

return address: (2)

resume link:

Resume AR for Iter2

Resume AR for Iter1

AR for Iter2

AR for Iter1

return address: (1)

resume link: /

resume link:

AR for P

When we get to the end

of Iter2’s body we

return as from a normal
call.

Iter1 may generate a

new item and P may 

again start up Iter2.

Resume AR for Iter1

AR for Iter1

[22]
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Simpler Iterator Implementation

Iter = iter ( ... )
while ... do

yield x
end

end

begin
for i in Iter(...) do

print(i);
end

end

⇓
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Simpler Iterator Implementation. . .

PROCEDURE Iter (
Success, Fail : LABEL;
VAR Resume : LABEL; VAR Result : T);

BEGIN
WHILE ... DO

ResumeLabel:
Result := x;
Resume := ADDR(ResumeLabel);
GOTO Success

END;
GOTO Fail;

END

[24]



520—Spring 2005—29

Simpler Iterator Implementation. . .

VAR Result : T;
VAR Resume : LABEL;
BEGIN

Iter(ADDR(SuccesLabel), ADDR(FailLabel),
Resume, Result);

SuccessLabel:
WRITE Result;
GOTO Resume;
FailLabel:

END;
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Icon Generators

Procedures are really generators; they can return 0, 1, or a
sequence of results. There are three cases

fail The procedure fails and generates no value.

return e The procedure generates one value, e.

suspend e The procedure generates the value e, and
makes itself ready to possibly generate more values.

procedure To(i,j)
while i <= j do {

suspend i
i+:= 1

}
end

[26]
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Summary

Sather (a mini-Eiffel) has adopted an iterator concept
similar to CLU’s, but tailored to OO languages.

Iterators function (and can be implemented as)
coroutines. Smart compilers should, however, take care
to implement “simple” iterators in a more direct way
(See the Sather paper).

Inline expansion of iterators may of course be helpful,
but the same caveats as for expansion of procedures
apply: code explosion, cache overflow, extra
compilation dependencies.
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