
520—Spring 2005—3

CSc 520

Principles of Programming
Languages

3: Scheme — Introduction

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—3

Background

Scheme is based on LISP which was developed by
John McCarthy in the mid 50s.

LISP stands for LISt Processing, not Lots of Irritating
Silly Parentheses.

Functions and data share the same representation:
S-Expressions.

A basic LISP implementation needs six functions
cons, car, cdr, equal, atom, cond.

Scheme was developed by Sussman and Steele in
1975.

[2]

520—Spring 2005—3

S-Expressions

An S-Expression is a balanced list of parentheses.

More formally, an S-expression is

1. a literal (i.e., number, boolean, symbol, character,
string, or empty list).

2. a list of s-expressions.

Literals are sometimes called atoms.

[3] 520—Spring 2005—3

S-Expressions — Examples

Legal Illegal
66

()

(4 5)

((5))

(()())

((4 5) (6 (7)))

(

(5))

()()

(4 (5)

)(

[4]

520—Spring 2005—3

S-Expressions as Trees

An S-expression can be seen as a linear representation
of tree-structure:

2

6 3 4

2

6

3 4 5 7

(2 (3 4) (5 (6) 7))

2

(6) (3 4)

[5] 520—Spring 2005—3

S-Expressions as Function Calls

A special case of an S-expression is when the first
element of a list is a function name.

Such an expression can be evaluated.

> (+ 4 5)
9
> (add-five-to-my-argument 20)
25
> (draw-a-circle 20 45)
#t

[6]

520—Spring 2005—3

S-Expressions as Functions

As we will see, function definitions are also
S-expressions:

� �

(de f ine (fa renhe i t−2−ce ls ius f)
(∗ (− f 3 2) 5 / 9)

)
� �

So, Scheme really only has one syntactic structure, the
S-expression, and that is used as a data-structure (to
represent lists, trees, etc), as function definitions, and
as function calls.

[7] 520—Spring 2005—3

Function Application

In general, a function application is written like this:

(operator arg
1
arg

2
. . . arg

n
)

The evaluation proceeds as follows:
1. Evaluate operator. The result should be a function

F .
2. Evaluate

arg
1
, arg

2
, . . . arg

n

to get
val1, val2, . . . valn

3. Apply F to val1, val2, . . . valn.

[8]

520—Spring 2005—3

Function Application — Examples

> (+ 4 5)
9
> (+ (+ 5 6) 3)
14
> 7
7
> (4 5 6)
eval: 4 is not a function
> #t
#t

[9] 520—Spring 2005—3

Atoms — Numbers

Scheme has

Fractions (5/9)

Integers (5435)

Complex numbers (5+2i)

Inexact reals (#i3.14159265)

> (+ 5 4)

9

> (+ (* 5 4) 3)

23

> (+ 5/9 4/6)

1.2

> 5/9

0.5

[10]

520—Spring 2005—3

Atoms — Numbers. . .

> (+ 5/9 8/18)
1
> 5+2i
5+2i
> (+ 5+2i 3-i)
8+1i
> (* 236542164521634 3746573426573425643)
886222587860913289285513763860662
> pi
#i3.141592653589793
> e
#i2.718281828459045
> (* 2 pi)
#i6.283185307179586

[11] 520—Spring 2005—3

Atoms — Numbers. . .

Scheme tries to do arithmetic exactly, as much as
possible.

Any computations that depend on an inexact value
becomes inexact.

Scheme has many builtin mathematical functions:

> (sqrt 16)
4
> (sqrt 2)
#i1.4142135623730951
> (sin 45)
#i0.8509035245341184
> (sin (/ pi 2))
#i1.0

[12]

520—Spring 2005—3

Atoms — Strings

A string is enclosed in double quotes.

> (display "hello")
hello
> "hello"
"hello"
> (string-length "hello")
5
> (string-append "hello" " " "world!")
"hello world!"

[13] 520—Spring 2005—3

Atoms — Booleans

true is written #t.

false is written #f.

> #t
true
> #f
false
> (display #t)
#t
> (not #t)
false

[14]

520—Spring 2005—3

Identifiers

Unlike languages like C and Java, Scheme allows
identifiers to contain special characters, such as
! $ % & * + - . / : < = > ? @ ˆ ˜ .
Identifiers should not begin with a character that can
begin a number.

This is a consequence of Scheme’s simple syntax.

You couldn’t do this in Java because then there would
be many ways to interpret the expression X-5+Y.

Legal Illegal
h-e-l-l-o

give-me!

WTF?

3some

-stance

[15] 520—Spring 2005—3

Defining Variables

define binds an expression to a global name:

(define name expression)

(define PI 3.14)

> PI
3.14

(define High-School-PI (/ 22 7))

> High-School-PI
3.142857

[16]

520—Spring 2005—3

Defining Functions

define binds an expression to a global name:

(define (name arg1 arg2 ...) expression)

arg1 arg2 ... are formal function parameters .

(define (f) ’hello)

> (f)
hello

(define (square x) (* x x))

> (square 3)
9

[17] 520—Spring 2005—3

Defining Helper Functions

A Scheme program consists of a large number of
functions.

A function typically is defined by calling other functions,
so called helper or auxiliary functions.

(define (square x) (* x x))

(define (cube x) (* x (square x)))

> (cube 3)
27

[18]

520—Spring 2005—3

Preventing Evaluation

Sometimes you don’t want an expression to be
evaluated.

For example, you may want to think of (+ 4 5) as a list
of three elements +, 4, and 5, rather than as the
computed value 9.

(quote (+ 4 5)) prevents (+ 4 5) from being
evaluated. You can also write ’(+ 4 5) .

> (display (+ 4 5))
9
> (display (quote (+ 4 5)))
(+ 4 5)
> (display ’(+ 4 5))
(+ 4 5)

[19] 520—Spring 2005—3

Dr Scheme

Download DrScheme from here: http://www.drscheme.org.

It has already been installed for you in lectura and the
Windows machines in the lab.

Start DrScheme under unix (on lectura) by saying

> drscheme

On Windows and MacOS it may be enough to click on
the DrScheme logo to start it up.

[20]

http://www.drscheme.org

520—Spring 2005—3

Dr Scheme

Definitions
window

Interaction
window

Language
level

Select
language
level

Add
teachpacks

Save
definitions

[21] 520—Spring 2005—3

Dr Scheme — Using TeachPacks

[22]

520—Spring 2005—3

Dr Scheme — Using the Stepper

[23] 520—Spring 2005—3

References

Free interpreter: http://www.drscheme.org.

Manual:
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html

Tutorials:
http://ai.uwaterloo.ca/˜dale/cs486/s99/scheme-tutorial.html

http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html

http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html

http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

[24]

http://www.drscheme.org
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://ai.uwaterloo.ca/~dale/cs486/s99/scheme-tutorial.html
http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html
http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html
http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

520—Spring 2005—3

References. . .

Language reference manual:
http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs.ps.

Some of this material is taken from
http://www.ecf.utoronto.ca/˜gower/CSC326F/slides, c©Diana
Inkpen 2002, Suzanne Stevenson 2001.

[25] 520—Spring 2005—3

Scheme so Far

A function is defined by

(define (name arguments) expression)

A variable is defined by

(define name expression)

Strings are inclosed in double quotes, like "this".
Common operations on strings are

(string-length string)
(string-append list-of-strings)

Numbers can be exact integers , inexact reals ,
fractions, and complex. Integers can get arbitrarily
large.

Booleans are written #t and #f.
[26]

520—Spring 2005—3

Scheme so Far. . .

An inexact number is written: #i3.14159265.

Common operations on numbers are
(+ arg1 arg2), (- arg1 arg2)
(add1 arg), (sub1 arg)
(min arg1 arg2), (max arg1 arg2)

A function application is written:

> (function-name arguments)

Quoting is used to prevent evaluation

(quote argument)

or

’argument

[27]

http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs.ps
http://www.ecf.utoronto.ca/~gower/CSC326F/slides

	Background
	S-Expressions
	S-Expressions --- Examples
	S-Expressions as Trees
	S-Expressions as Function Calls
	S-Expressions as Functions
	Function Application
	Function Application --- Examples
	Atoms --- Numbers
	Atoms --- Numbersldots
	Atoms --- Numbersldots
	Atoms --- Strings
	Atoms --- Booleans
	Identifiers
	Defining Variables
	Defining Functions
	Defining Helper Functions
	Preventing Evaluation
	Dr Scheme
	Dr Scheme
	Dr Scheme --- Using TeachPacks
	Dr Scheme --- Using the Stepper
	References
	Referencesldots
	Scheme so Far
	Scheme so Farldots

