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Background

Scheme is based on LISP which was developed by
John McCarthy in the mid 50s.

LISP stands for LISt Processing, not Lots of Irritating
Silly Parentheses.

Functions and data share the same representation:
S-Expressions.

A basic LISP implementation needs six functions
cons, car, cdr, equal, atom, cond.

Scheme was developed by Sussman and Steele in
1975.
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S-Expressions

An S-Expression is a balanced list of parentheses.

More formally, an S-expression is

1. a literal (i.e., number, boolean, symbol, character,
string, or empty list).

2. a list of s-expressions.

Literals are sometimes called atoms.
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S-Expressions — Examples
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S-Expressions as Trees

An S-expression can be seen as a linear representation
of tree-structure:
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S-Expressions as Function Calls

A special case of an S-expression is when the first
element of a list is a function name.

Such an expression can be evaluated.

> (+ 4 5)
9
> (add-five-to-my-argument 20)
25
> (draw-a-circle 20 45)
#t
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S-Expressions as Functions

As we will see, function definitions are also
S-expressions:

� �

( de f ine ( fa renhe i t−2−ce ls ius f )
( ∗ (− f 3 2 ) 5 / 9 )

)
� �

So, Scheme really only has one syntactic structure, the
S-expression, and that is used as a data-structure (to
represent lists, trees, etc), as function definitions, and
as function calls.
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Function Application

In general, a function application is written like this:

(operator arg
1
arg

2
. . . arg

n
)

The evaluation proceeds as follows:
1. Evaluate operator. The result should be a function

F .
2. Evaluate

arg
1
, arg

2
, . . . arg

n

to get
val1, val2, . . . valn

3. Apply F to val1, val2, . . . valn.
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Function Application — Examples

> (+ 4 5)
9
> (+ (+ 5 6) 3)
14
> 7
7
> (4 5 6)
eval: 4 is not a function
> #t
#t
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Atoms — Numbers

Scheme has

Fractions (5/9)

Integers (5435)

Complex numbers (5+2i)

Inexact reals (#i3.14159265)

> (+ 5 4)

9

> (+ (* 5 4) 3)

23

> (+ 5/9 4/6)

1.2

> 5/9

0.5

[10]

520—Spring 2005—3

Atoms — Numbers. . .

> (+ 5/9 8/18)
1
> 5+2i
5+2i
> (+ 5+2i 3-i)
8+1i
> (* 236542164521634 3746573426573425643)
886222587860913289285513763860662
> pi
#i3.141592653589793
> e
#i2.718281828459045
> (* 2 pi)
#i6.283185307179586
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Atoms — Numbers. . .

Scheme tries to do arithmetic exactly, as much as
possible.

Any computations that depend on an inexact value
becomes inexact.

Scheme has many builtin mathematical functions:

> (sqrt 16)
4
> (sqrt 2)
#i1.4142135623730951
> (sin 45)
#i0.8509035245341184
> (sin (/ pi 2))
#i1.0
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Atoms — Strings

A string is enclosed in double quotes.

> (display "hello")
hello
> "hello"
"hello"
> (string-length "hello")
5
> (string-append "hello" " " "world!")
"hello world!"
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Atoms — Booleans

true is written #t.

false is written #f.

> #t
true
> #f
false
> (display #t)
#t
> (not #t)
false
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Identifiers

Unlike languages like C and Java, Scheme allows
identifiers to contain special characters, such as
! $ % & * + - . / : < = > ? @ ˆ ˜ .
Identifiers should not begin with a character that can
begin a number.

This is a consequence of Scheme’s simple syntax.

You couldn’t do this in Java because then there would
be many ways to interpret the expression X-5+Y.

Legal Illegal
h-e-l-l-o

give-me!

WTF?

3some

-stance
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Defining Variables

define binds an expression to a global name:

(define name expression)

(define PI 3.14)

> PI
3.14

(define High-School-PI (/ 22 7))

> High-School-PI
3.142857
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Defining Functions

define binds an expression to a global name:

(define (name arg1 arg2 ...) expression)

arg1 arg2 ... are formal function parameters .

(define (f) ’hello)

> (f)
hello

(define (square x) (* x x))

> (square 3)
9
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Defining Helper Functions

A Scheme program consists of a large number of
functions.

A function typically is defined by calling other functions,
so called helper or auxiliary functions.

(define (square x) (* x x))

(define (cube x) (* x (square x)))

> (cube 3)
27
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Preventing Evaluation

Sometimes you don’t want an expression to be
evaluated.

For example, you may want to think of (+ 4 5) as a list
of three elements +, 4, and 5, rather than as the
computed value 9.

(quote (+ 4 5)) prevents (+ 4 5) from being
evaluated. You can also write ’(+ 4 5) .

> (display (+ 4 5))
9
> (display (quote (+ 4 5)))
(+ 4 5)
> (display ’(+ 4 5))
(+ 4 5)

[19] 520—Spring 2005—3

Dr Scheme

Download DrScheme from here: http://www.drscheme.org.

It has already been installed for you in lectura and the
Windows machines in the lab.

Start DrScheme under unix (on lectura) by saying

> drscheme

On Windows and MacOS it may be enough to click on
the DrScheme logo to start it up.

[20]
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Dr Scheme

Definitions
window

Interaction
window

Language
level

Select 
language
level

Add
teachpacks

Save
definitions
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Dr Scheme — Using TeachPacks
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Dr Scheme — Using the Stepper
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References

Free interpreter: http://www.drscheme.org.

Manual:
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html

Tutorials:
http://ai.uwaterloo.ca/˜dale/cs486/s99/scheme-tutorial.html

http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html

http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html

http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

[24]

http://www.drscheme.org
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://ai.uwaterloo.ca/~dale/cs486/s99/scheme-tutorial.html
http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html
http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html
http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme


520—Spring 2005—3
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Language reference manual:
http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs.ps.

Some of this material is taken from
http://www.ecf.utoronto.ca/˜gower/CSC326F/slides, c©Diana
Inkpen 2002, Suzanne Stevenson 2001.
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Scheme so Far

A function is defined by

(define (name arguments) expression)

A variable is defined by

(define name expression)

Strings are inclosed in double quotes, like "this".
Common operations on strings are

(string-length string)
(string-append list-of-strings)

Numbers can be exact integers , inexact reals ,
fractions, and complex. Integers can get arbitrarily
large.

Booleans are written #t and #f.
[26]
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Scheme so Far. . .

An inexact number is written: #i3.14159265.

Common operations on numbers are
(+ arg1 arg2), (- arg1 arg2)
(add1 arg), (sub1 arg)
(min arg1 arg2), (max arg1 arg2)

A function application is written:

> (function-name arguments)

Quoting is used to prevent evaluation

(quote argument)

or

’argument
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