CSc 520
Principles of Programming
Languages

3: Scheme — Introduction

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2004 Christian Collberg

—Spring 2005—3 [1]

Background

Scheme is based on LISP which was developed by

John McCarthy in the mid 50s.

Silly Parentheses.

S-Expressions.

LISP stands for LISt Processing, not Lots of Irritating

Functions and data share the same representation:

A basic LISP implementation needs six functions

cons, car, cdr, equal, atom, cond.

1975.

520—Spring 2005—3

Scheme was developed by Sussman and Steele in

(2]

- S-Expressions

#® An S-Expression is a balanced list of parentheses.

More formally, an S-expression is

1. aliteral (i.e., number, boolean, symbol, character,
string, or empty list).
2. alist of s-expressions.

Literals are sometimes called atoms.

 Chrinma ONNE 2 2l

S-Expressions — Examples

cHoNn ©

Legal lllegal
66
O o
4 5)

00O
() & (5)
(016)) Y
(4 5 (6 (M)

nrimen ONNE 2

S-Expressions as Trees

#® An S-expression can be seen as a linear representation
of tree-structure:

(6) /.\ (3 4)

o®0—0 Ne

—Spring 2005—3 [5]

S-Expressions as Function Calls

A special case of an S-expression is when the first
element of a list is a function name.

Such an expression can be evaluated.

> (+ 4 5)

9

> (add-five-to-my-argument 20)
25

> (draw-a-circle 20 45)

#t

520—Spring 2005—3 [6]

S-Expressions as Functions

» As we will see, function definitions are also
S-expressions:

(define (farenheit—2-—celsius f)
(» (= f 32) 5/9)
)

#® So, Scheme really only has one syntactic structure, the
S-expression, and that is used as a data-structure (to
represent lists, trees, etc), as function definitions, and
as function calls.

Chnrinmn 2NNE 2 r-1

Function Application

In general, a function application is written like this:
(operator arg; arg, ... arg,,)

The evaluation proceeds as follows:
1. Evaluate operator. The result should be a function

F.
2. Evaluate
arg;, argy, ... arg,
to get
valy, vals, ... val,

3. Apply Fto valy, valg, ... valy,.

Y9N Chrrine O2°NNE 9 rol

Function Application — Examples

=

> (+ 4 5)

9

>+ (+56) 3)

14

> 7

7

> (4 5 6)

eval: 4 i1s not a function
> #t

#Ht

—Spring 2005—3 [9]

Atoms — Numbers

=

Scheme has

Fractions (5/9)

Integers (5435)

» Complex numbers (5+21)

Inexact reals (#13.14159265)
> (+ 5 4)
9

> (+ (* 54) 3
23

> (+ 5/9 4/6)
1.2
> 5/9
0.5
520—Spring 2005—3 [10]

Atpms — Nurpbers.\. .

=

> (+ 5/9 8/18)

1

> 5+21i

5+2i

> (+ 5+21 3-1)

8+1i

> (* 236542164521634 3746573426573425643)
886222587860913289285513763860662
> pi

#13.141592653589793

> e

#12.718281828459045

> (* 2 pi)

#16.283185307179586

 Chrinma ONNE 2 rM11

Atpms — Nurpbers.\. .

=

#® Scheme tries to do arithmetic exactly, as much as
possible.

Any computations that depend on an inexact value
becomes inexact.

Scheme has many builtin mathematical functions:

> (sqrt 16)

4

> (sgrt 2)
#11.4142135623730951
> (sin 45)
#10.8509035245341184
> (sin (/ p1 2))
#11.0

Y9N Chrrine O2°NNE 9 Mo

Atoms — Strings

A string is enclosed in double gquotes.

> (display "hello™)

hello

> "hello”

"hello"”

> (string-length "hello™)

5

> (string-append "hello™ ' '
"hello world!"

"world!'")

—Spring 2005—3 [13]

Atoms — Booleans

® true is written #t.

o fTalse is written #¥F.

> #t

true

> #f

false

> (display #t)
#Ht

> (not #t)
false

520—Spring 2005—3 [14]

Identif\ie\r‘su

=

Unlike languages like C and Java, Scheme allows

identifiers to contain special characters, such as

' $% &*+-. [/ : <=>2 @~ _7 .

Identifiers should not begin with a character that can
begin a number.

This is a consequence of Scheme’s simple syntax.
® You couldn’t do this in Java because then there would

be many ways to interpret the expression X-5+Y.

Defining Variables

ega ega
L | 1] |
h-e-1-1-0

_ 3some
give-mel
WTE? -stance

Chnrinmn 2NNE 2 rMci

define binds an expression to a global name:

cHoNn ©

(define name expression)

(define Pl 3.14)

> Pl
3.14

(define High-School-Pl (/ 22 7))

> High-School-PI
3.142857

nrimen ONNE 2 Moel

Defining Functions

define binds an expression to a global name:

(define (name arg; args -..) expression)

® arg; arg. ... are formal function parameters.

(define (f) ’hello)

Defin_ing Helper Functions

#® A Scheme program consists of a large number of
functions.

A function typically is defined by calling other functions,
so called helper or auxiliary functions.

(define (square x) (* x X))

> () - *
hello (define (cube x) (* x (square x)))
. > (cube 3)
(define (square x) (* x X)) 27
> (square 3)
9
—Spring 2005—3 [17] 520—Spring 2005—3 [18]
Preventing Evaluation Dr Scheme

Sometimes you don’t want an expression to be
evaluated.

» For example, you may want to think of (+ 4 5) as a list

of three elements +, 4, and 5, rather than as the
computed value 9.

#® (quote (+ 4 5)) prevents (+ 4 5) from being
evaluated. You can also write '(+ 4 5).

> (display (+ 4 5))

9
> (display (quote (+ 4 5)))
(+ 45

> (display *(+ 4 5))
(+ 4 5)

 Chrinma ONNE 2 Maol

Download DrScheme from here: nttp:/7um.drscheme.org.

e

|t has already been installed for you in lectura and the
Windows machines in the lab.

Start DrScheme under unix (on lectura) by saying
> drscheme

On Windows and MacOS it may be enough to click on
the DrScheme logo to start it up.

Y9N Chrrine O2°NNE 9 nl

http://www.drscheme.org

D

r Scheme

] S,

=] (=]

Save File Edit View Lapguage Scheme Special Help

definitions

(£2¢ £)
£ 32) 5/9)

PI 3.14)

(define PI2 (+ 1 2.14))
Sel ect (define (square x) (* x x)) /
| anguage

(define (cube x) (* X (square x)))

| evel

Add
t eachpacks

Q_ Check Syntax| 2“Run| @ Stop
5|

> {cube 3)
27

>

Welcome to DrScheme, VSM

Language: Advanced Studént.

=

/

T
7:0-8:0 ReadeeD not running

—Spring 2005—3

[21]

Def i ni ti ons
wi ndow

Language
| evel

Interactior
wi ndow

Dr Scheme — Using TeachPacks

520—Spring 2005—3

o]
File Edit View Language Scheme Special Help
[Untitied] =
ine_) (3 Sep| | Creck Sy | 2 Ron] | @ 5o
5|
I}
> (start 300 300) -
true
> (draw-circle (make-posn 50 50) 20)
true
> | J
7|
I}
8:2 R—;zdeIileD not running
S, =l[=]x] X
Select a Teachpack
O erg/lib/plt/teac hpack/htdp/
[3 [arowguiss

7
lerg/libiplt/teachpack/htdp/

that start with *.*

[E— |

cancel| [ox]

[22]

Dr Scheme — Using the Stepper

[~ progs.scm - Drscheme® T =]
File Edit View Language Scheme Special Help

(define (£2¢ f) -
(* (- £ 32) 5/9)
)
(define (c2f c¢)
32 (* a/5 -
{32 (esimn N SEE]
(c2f (f2c 32)) File Edit Help
Home| |< Application| < Step| Step>| Application>|
(dsfine (f2c £) (* (- £ 32) 0.5)) b
(define (e2f <) (+ 32 (* ¢ 1.8)))
((lambda () ((lambda (c)
(+ 32 (* ¢« 1.8))) (+ 32 (* ¢« 1.8)))
(f2c 32)) ((lambda (£}
Welcome to DrSchemg - (*
B - f 32
Language: Intermediat é_g)) .
32 32))
>
I}
I
I}
42 ReadelileD not running
 Chrinma ONNE 2 rHnl

Refe rences

» Free interpreter: http://www._drscheme.org.

o Manual:

http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme._htm

o Tutorials:

$» http://ai.uwaterloo.ca/ dale/cs486/s99/scheme-tutorial .html

$» htitp://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html

$» http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial .html

® http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

Y9N Chrrine O2°NNE 9

mal

http://www.drscheme.org
http://www.swiss.ai.mit.edu/projects/scheme/documentation/scheme.html
http://ai.uwaterloo.ca/~dale/cs486/s99/scheme-tutorial.html
http://cs.wwc.edu/%7Ecs_dept/KU/PR/Scheme.html
http://www.cis.upenn.edu/%7Eungar/CIS520/scheme-tutorial.html
http://dmoz.org/Computers/Programming/Languages/Lisp/Scheme

‘, References. .

=

Language reference manual:

http://www.swiss.ai.-mit.edu/ftpdir/scheme-reports/r5rs.psk

Some of this material is taken from
http://www.ecf.utoronto.ca/~gower/CSC326F/slides, @Diana
Inkpen 2002, Suzanne Stevenson 2001.

—Spring 2005—3 [25]

Scheme so\Farx

o

s

A function is defined by
(define (name arguments) expression)
A variable is defined by
(define name expression)

Strings are inclosed in double quotes, like ""this".
Common operations on strings are

s (string-length string)

s (string-append list-of-strings)

Numbers can be exact integers, inexact reals,
fractions, and complex. Integers can get arbitrarily
large.

Booleans are written #t and #T¥.

520—Spring 2005—3 [26]

Scheme SO Far.

S

An inexact number is written: #13.14159265.
Common operations on numbers are

s (+argl arg2), (-argl arg2)

s (addl arg), (subl arg)

s (minargl arg2), (max argl arg2)
A function application is written:

> (function-name arguments)
Quoting is used to prevent evaluation
(quote argument)
or
argument

 Chrinma ONNE 2 71

http://www.swiss.ai.mit.edu/ftpdir/scheme-reports/r5rs.ps
http://www.ecf.utoronto.ca/~gower/CSC326F/slides

	Background
	S-Expressions
	S-Expressions --- Examples
	S-Expressions as Trees
	S-Expressions as Function Calls
	S-Expressions as Functions
	Function Application
	Function Application --- Examples
	Atoms --- Numbers
	Atoms --- Numbersldots
	Atoms --- Numbersldots
	Atoms --- Strings
	Atoms --- Booleans
	Identifiers
	Defining Variables
	Defining Functions
	Defining Helper Functions
	Preventing Evaluation
	Dr Scheme
	Dr Scheme
	Dr Scheme --- Using TeachPacks
	Dr Scheme --- Using the Stepper
	References
	Referencesldots
	Scheme so Far
	Scheme so Farldots

