
520—Spring 2005—35

CSc 520

Principles of Programming
Languages

35: Procedures — Closures

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—35

Subroutine Closures

A closure is a structure

(procedure_addr,environment).

To pass C() to A we construct a closure consisting of
C’s address and the static link that would have been
used if C would have been called directly:

program M;
procedure A(procedure P)

P();
end
procedure C(); begin end;

begin
A(C);

end

[2]

520—Spring 2005—35

Deep Binding

When a reference to a procedure is created (for
example by passing it as a reference to another
procedure), when are scope rules applied?
1. When the reference is first created?
2. When the routine is first called?

Early binding of a referencing environment (what Pascal
uses) is called deep binding.

[3] 520—Spring 2005—35

Subroutine Closures. . .

procedure A(I:integer; procedure P)
procedure B(); begin write(I); end;

begin
if I > 1 then P() else A(2,B);

end

procedure C(); begin end;

begin
A(1,C);

end

There are two I:s when B is called.

[4]



520—Spring 2005—35

Subroutine Closures. . .

I=1

P={C,*}

static link

I=2

P={B,*}

static link

static link

B()

A(2,B)

A(1,C)

main

A closure was created for B when A(2,B) was closed,
hence B will print 1.

[5] 520—Spring 2005—35

First-Class Subroutines

A language construct is first-class if it can be passed as
a parameter, returned from a subroutine, or assigned to
a variable.

A language construct is second-class if it can be
passed as a parameter but not be returned from a
subroutine, or assigned to a variable.

A language construct is third-class if it can’t even be
passed as a parameter.

Procedures are second-class in most imperative
languages.

[6]

520—Spring 2005—35

First-Class Subroutines. . .

If a procedure can be returned as the result of a
function we could reference an environment that has
gone out of scope:

procedure A() : procedure;
var x : integer := 5;
procedure B();

write(x);
end

begin
return B;

end;
begin

var X : procedure := A();
X();

end
[7] 520—Spring 2005—35

First-Class Subroutines. . .

In functional languages functions are first-class.

Functional languages specify that local variables have
unlimited extent — they exist for as long as someone
references them.

Algol-like languages specify that local variables have
limited extent — they exist until the scope in which they
are declared is exited.

Objects with limited extent can be stored on a stack.
Objects with unlimited extent must be stored on the
heap.

[8]



520—Spring 2005—35

First-Class Subroutines. . .

C and C++ do not have nested scope — no problem.

Modula-2 — global procedures are first-class (can be
stored), local procedures are third-class.

Modula-3 — global procedures are first-class, local
procedures are second-class (can be passed as
parameters).

Ada 83 — procedures are third class.

Ada 95 — nested procedures can be returned if the
scope in which it was declared is at least as wide as
that of the declared return type. I.e. a procedure can
only be propagated to an area of the program where the
referencing environment is active.

[9] 520—Spring 2005—35

Call-With-Current-Continuation

The Scheme built-in function
call-with-current-continuation (also called
call/cc) takes a function as argument:

call-with-current-continuation (foo)
(foo cont)

foo takes a continuation as argument.

(call/cc foo) calls foo, passing it the current
continuation.

A continuation is a closure that holds the current
program counter and environment.

[10]

520—Spring 2005—35

Call-With-Current-Continuation. . .

foo can invoke the continuation and immediately return
to the situation as it was when the call was made.

Any intermediate stack frames are popped off.

Continuations are first-class: you can store them in
variables, return them from functions, etc.

call/cc can be used as a general building-block to
construct a variety of control structures, such as
iterators and coroutines.

Continuations can, for example, be used to quickly exit
a tree-search procedure once the node we’re looking for
has been found.

[11] 520—Spring 2005—35

Call-With-Current-Continuation. . .

The function throws the continuation the value 99 which
makes it pop out of the current evaluation and return 99:

> (call/cc (lambda (c) (c 99)))
99

The expression (* [] 76) is never executed. Rather,
the function pops out and returns 99:

> (call/cc (lambda (c) (* (c 99) 76)))
99

[12]



520—Spring 2005—35

Call-With-Current-Continuation. . .

Continuations can be stored in variables and invoked
later:
> (let ((cont #f))

(call/cc (lambda (k) (set! cont k)))
(cont #f))

99

Or, like this:

> (define cont #f)
> (+ 5 (call/cc

(lambda (e) (set! cont e) (* 4 3))))
17
> (cont 10)
15

[13] 520—Spring 2005—35

Readings and References

Read Scott, pp. 141–143

[14]


	Subroutine Closures
	Deep Binding
	Subroutine Closuresldots 
	Subroutine Closuresldots 
	First-Class Subroutines
	First-Class Subroutinesldots 
	First-Class Subroutinesldots 
	First-Class Subroutinesldots 
	Call-With-Current-Continuation
	Call-With-Current-Continuationldots 
	Call-With-Current-Continuationldots 
	Call-With-Current-Continuationldots 
	Readings and References

