
520—Spring 2005—36

CSc 520

Principles of Programming
Languages

36: Procedures — Coroutines

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—36

Coroutines

Coroutines are supported by Simula and Modula-2.
They are similar to Java’s threads, except the
programmer has to explicitly transfer control from one
execution context to another.

Thus, like threads several coroutines can exist
simultaneously but unlike threads there is no central
scheduler that decides which coroutine should run next.

A coroutine is represented by a closure.

A special operation transfer(C) shifts control to the
coroutine C, at the location where C last left off.

[2]

520—Spring 2005—36

Coroutines. . .

The next slide shows an example from Scott where two
coroutines execute “concurrently”, by explicitly
transferring control between each other.

In the example one coroutine displays a moving
screen-saver, the other walks the file-system to check
for corrupt files.

[3] 520—Spring 2005—36

Coroutines. . .

var us, cfs: coroutine;

coroutine update_screen() {
...
detach
loop {

... transfer(cfs) ...
}

}

coroutine check_file_system() { ... }

main () { ... }

[4]



520—Spring 2005—36

Coroutines. . .

coroutine check_file_system() {
...
detach
for all files do {

... transfer(cfs)

... transfer(cfs)
... transfer(cfs) ...

}
}

main () {
us := new update_screen();
cfs := new check_file_system();
transfer(us);

}

[5] 520—Spring 2005—36

Coroutines in Modula-2

Modula-2’s system module provides two functions to create and transfer
between coroutines:

PROCEDURE NEWPROCESS(

proc: PROC; (* The procedure *)

addr: ADDRESS; (* The stack *)

size: CARDINAL; (* The stack size *)

VAR new: ADDRESS); (* The coroutine *)

PROCEDURE TRANSFER(

VAR source: ADDRESS; (* Current coroutine *)

VAR destination: ADDRESS); (* New coroutine *)

The first time TRANSFER is called source will be instantiated to

the main (outermost) coroutine.

[6]

520—Spring 2005—36

Coroutines in Modula-2. . .

VAR crparams: CoroutineParameters;

source: ADDRESS; (* current coroutine is called by this *)

newcr: ADDRESS; (* coroutine just created by NEWPROCESS *)

PROCEDURE Coroutine;

VAR myparams: CoroutineParameters;

BEGIN

myparams := crparams;

TRANSFER(newcr, source); (* return to calling coroutine *)

(* rest of coroutine *)

END Coroutine;

PROCEDURE Setup(params: CoroutineParameters; proc: PROC);

BEGIN

NEWPROCESS(proc, addr, size, newcr);

crparams := params; TRANSFER(source, newcr);

END Setup;

[7] 520—Spring 2005—36

Readings and References

Read Scott, pp. 474–479

http://www.mathematik.uni-ulm.de/oberon/0.5/articles/coroutines.html

[8]

http://www.mathematik.uni-ulm.de/oberon/0.5/articles/coroutines.html

	Coroutines
	Coroutinesldots 
	Coroutinesldots 
	Coroutinesldots 
	Coroutines in Modula-2
	Coroutines in Modula-2ldots 
	Readings and References

