CSc 520

Principles of Programming
L anguages
36: Procedures — Coroutines

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Spring 2005—36 [1]

Coroutines

Coroutines are supported by Simula and Modula-2.
They are similar to Java’s threads, except the
programmer has to explicitly transfer control from one
execution context to another.

® Thus, like threads several coroutines can exist
simultaneously but unlike threads there is no central
scheduler that decides which coroutine should run next.

°

A coroutine is represented by a closure.

A special operation transfer(C) shifts control to the
coroutine C, at the location where C last left off.

520—Spring 2005—36 [2]

~ Coroutines...

The next slide shows an example from Scott where two
coroutines execute “concurrently”, by explicitly
transferring control between each other.

In the example one coroutine displays a moving
screen-saver, the other walks the file-system to check
for corrupt files.

 Chnrinme ONNE 20 2l

~ Coroutines...

var us, cfs: coroutine;
coroutine update_screen() {

det ach

| oop {
transfer(cfs)
}
}
coroutine check file_system() { ... }
main () { ... }

~ Coroutines....

=

coroutine check file system() {
det ach
for all files do {
transfer(cfs)

transfer(cfs)
transfer(cfs)

main () {
us : = new update_screen();
cfs := new check file _system();

transfer(us);
}

—Spring 2005—36 [5]

Corwouti nes in\ M Qdula—2 |

= =

® Modula-2's system module provides two functions to create and transfer
between coroutines:

PROCEDURE NEWPROCESS(

proc: PROCC; (* The procedure *)

addr: ADDRESS; (* The stack *)

si ze: CARDI NAL; (* The stack size *)

VAR new. ADDRESS) ; (* The coroutine *)
PROCEDURE TRANSFER(

VAR sour ce: ADDRESS; (* Current coroutine *)

VAR destinati on: ADDRESS); (* New coroutine *)

® The first time TRANSFERis called sour ce will be instantiated to
the main (outermost) coroutine.

520—Spring 2005—36 [6]

Coro{utines N I\\/I¥Qd¥ula-2. o

| =

VAR crparans: CoroutineParaneters;
source: ADDRESS; (* current coroutine is called by this *)
newcr: ADDRESS; (* coroutine just created by NEWPROCESS *)

PROCEDURE Cor out i ne;
VAR nyparanms: Corouti neParaneters;
BEG N
nyparans : = Crparans,
TRANSFER(newcr, source); (* return to calling coroutine *)
(* rest of coroutine *)
END Cor out i ne;

PROCEDURE Set up(parans: Corouti neParaneters; proc: PROC);
BEG N

NEWPROCESS(proc, addr, size, newcr);

crparans : = parans; TRANSFER(source, newcr);
END Set up;

 Cnhrinme ONNE 20 -1

Readings and \R\eferences |

= e

® Read Scott, pp. 474-479
]

http://ww. mat hemati k. uni - ul m de/ oberon/ 0. 5/ articl es/ coroutines. htm

Y9N Chrrine O2NNE 20 rol

http://www.mathematik.uni-ulm.de/oberon/0.5/articles/coroutines.html

	Coroutines
	Coroutinesldots
	Coroutinesldots
	Coroutinesldots
	Coroutines in Modula-2
	Coroutines in Modula-2ldots
	Readings and References

