
520—Spring 2005—37

CSc 520

Principles of Programming
Languages
37: Exceptions

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—37

Exception Handling

What should a program do if it tries to pop an element
off an empty stack, or divides by 0, or indexes outside
an array, or produces an arithmetic error, such as
overflow?

In C, many procedures will return a status code. In most
cases programmers will “forget” to check this status
flag.

Modern languages have built-in exception handling
mechanisms. When an exception is raised (or thrown) it
must be handled or the program will terminate.

Exceptions can be raised implicitly by the run-time
system (overflow, array bounds errors, etc), or explicitly
by the programmer.

[2]

520—Spring 2005—37

Exception Handling. . .

When an exception is raised, the run-time system has
to look for the corresponding handler, the piece of code
that should be executed for the particular exception.

The right handler cannot be determined statically (at
compile-time). Rather, we have to do a dynamic
(run-time) lookup when the exception is raised.

In most languages, you start looking in the current block
(or procedure). If it contains no appropriate handler, you
return from the current routine and re-raise the
exception in the caller. This continues until a handler is
found or until we get to the main program (in which case
the program terminates with an error).

[3] 520—Spring 2005—37

Exception Handling. . .

What happens after an exception handler has been
found and executed?
resumption model Go back to where the exception was

raised and re-execute the statement (PL/I).
termination model Return from the procedure (or unit)

containing the handler (Ada).

[4]



520—Spring 2005—37

Exceptions in Modula-3

Exceptions are declared like this:

INTERFACE M;
EXCEPTION Error(TEXT);
PROCEDURE P () RAISES {Error};

END M;

Exceptions can take parameters. In this case, the
parameter to Error is a string. Presumably, the
programmer will return the kind of error in this string.

The declaration of P states that it can only raise one
exception, Error.

If there is no RAISES clause, the procedure is expected
to raise no exceptions.

[5] 520—Spring 2005—37

Exceptions in Modula-3. . .

S1 and S2 can raise exceptions implicitly, or the
programmer can raise an exception explicitly using
RAISE.

When the Error-exception is raised, the EXCEPT-block
is searched and the code for the Error exception is
executed.

PROCEDURE P () RAISES {Error};

BEGIN

TRY

S1; RAISE Error("Help!"); S2;

EXCEPT

Error (V) => Write(V); |

Problem (V) => Write("No Probs!"); |

ELSE Write("Unhandled Exception!");

END;

END P;

[6]

520—Spring 2005—37

Exceptions in Modula-3. . .

An unhandled exception is re-raised in the next
dynamically enclosing TRY-block. If no matching
handler is found the program is terminated.

MODULE M;
BEGIN

TRY
TRY S1; EXCEPT

Problem (V)=>Write(V);
END;

EXCEPT
Error (V) => Write(V); |
ELSE Write("Unhandled Exception!");

END;
END M;

[7] 520—Spring 2005—37

Exceptions in Modula-3. . .

An unhandled exception is re-raised in the calling
procedure. Exception handlers can explicitly re-raise an
exception, or raise another exception.

MODULE M;

PROCEDURE P ();

BEGIN

TRY S1; EXCEPT

Problem (V)=>RAISE Error("OK")

END;END P;

BEGIN

TRY P(); EXCEPT

Error (V) => Write(V); |

Problem (V) => Write(V);

END;

END M;

[8]



520—Spring 2005—37

Implementation

We want 0-overhead exception handling. This means
that – unless an exception is raised – there should be
no cost associated with the exception handling
mechanism.

We allow raising and handling an exception to be quite
slow.

When an exception is raised we need to be able to
1. in the current procedure find the exception handler (if

any) that encloses the statement that raised the
exception, and

2. rewind the stack (pop activation records) until a
procedure with an exception handler is found.

[9] 520—Spring 2005—37

The Range Table

We build a RangeTable at compile-time. It has one
entry for each procedure and for each TRY-block.

Each entry holds four addresses: pc high, pc low,
handler and cleanup.

[pc low· · ·pc high] is the range of addresses for which
handler is the exception handler.

[10]

520—Spring 2005—37

The Range Table. . .

Object CodeSource Code Stack

R
a
n
g
e

T
a
b
l
e

M

M_end

H3

/

E1

E2

H2
P_C

TRY

EXCEPT

END

PROC P()

Q()

E1 => ...

END P;

P();
PROGRAM M()

END M

Return
Addr

Dynamic

Return
Addr

Dynamic
M

P

(1) (2)

cleanup:

handler:

pc_low:

pc_high:

Link

Link

P:

E2:

E1:

P_C: <cleanup>

H2: <handler 2>

call Q

M:
call P

H3:
<default
handler>

[11] 520—Spring 2005—37

Unwinding the Stack (Locate)

Let procedure S raise exception E at code address V.
We search the range table to find an entry which covers
V, i.e. for which pc low<=V<=pc high.

Entry (6) covers all of procedure S (for S to S end),
and hence V. There’s no exception handler for this
range. We just execute S’s cleanup code, S C.

S C will restore saved registers, etc, and deallocate the
activation record.

[12]



520—Spring 2005—37

Unwinding the Stack (Locate). . .

RAISE E1
END R;

PROC S()

R
a
n
g
e

T
a
b
l
e

E3

E4

H1
R_C

S

S_end

/
S_Ccleanup:

handler:

pc_low:

pc_high:

(5) (6)

Object CodeSource Code

S_C: <cleanup>

S: 

Stack

Return
Addr

Dynamic
Link

S

V: RAISE E1

[13] 520—Spring 2005—37

Unwinding the Stack (Unwind)

Since S didn’t have a handler, we must unwind the
stack until one is found.

S’s return address is K, which is covered by entry (5) in
the range table. Entry (5) has a handler defined (at
address H1). Run it!

[14]

520—Spring 2005—37

Unwinding the Stack (Unwind). . .

Stack

Return
Addr

Dynamic

Return
Addr

Dynamic

Link

Link

R

S

E3

E4

H1
R_C

S

S_end

/
S_C

(5) (6)

R
a
n
g
e

T
a
b
l
e

RAISE E1
END R;

PROC S()

END R;

EXCEPT
E2 => ...

END

PROC R()
TRY
S()

R:
E3:

E4:

R_C: <cleanup>
H1: <handler 1>

Object CodeSource Code

S_C: <cleanup>

S: 

K

cleanup:

handler:

pc_low:

pc_high:

V: RAISE E1

call S

[15] 520—Spring 2005—37

The Exception Handler

The exception handler itself can be translated as a
sequential search.

If the TRY-EXCEPT-block has no ELSE part, the default
action will be to re-raise the exception.

TRY
S1;
RAISE e;
S2;

EXCEPT
E1 => H1 |
E2 => H2 |

END;

⇒

S1;
RAISE e;
S2;
IF e = E1 THEN H1

ELSIF e = E2 THEN H2

ELSE
RAISE e

ENDIF;

[16]



520—Spring 2005—37

The Algorithm

LOOP

D := The first procedure descriptor (Range Table

entry) such that D.pc low <= PC <= D.pc high;

IF D.handler = the default handler THEN

abort and coredump

ELSIF D.handler 6= NIL THEN GOTO D.handler;

ELSE

Execute the cleanup routine D.cleanup;

PC := Return address stored in the current frame;

SP := SP of previous frame;

FP := FP of previous frame;

END;

END;

[17] 520—Spring 2005—37

Example — Explanation of source code

Consider the example on the next slide.

The main program calls procedure P(). There is a
<default handler> defined for the program at
address H3.

Procedure P() calls Q(). Exception X1 is caught by the
handler at address H2.

Q() calls R().

R() calls S(). Exception X2 is caught by the handler at
address H1.

S() throws exception X1 at address A1.

[18]

520—Spring 2005—37

Example

MPQRS

P
R
O
C
 
Q
(
)

R
(
)
;

E
N
D
 
Q

P
R
O
C
 
R
(
)

T
R
Y
S
(
)

E
N
D
 
R
;

E
X
C
E
P
T

E
N
DX
2
 
=
>
 
.
.
.

E
N
D
 
R
;

P
R
O
C
 
S
(
)

R
A
I
S
E
 
X
1

A
5
:

M
:
c
a
l
l
 
P

H
3
: <
d
e
f
a
u
l
t

h
a
n
d
l
e
r
>

S
_
C
:
 
<
c
l
e
a
n
u
p
>

S
:
 
A
1
:
t
h
r
o
w
 
X
1

A
2
:

c
a
l
l
 
S

R
:
E
3
:

E
4
:

R
_
C
:
 
<
c
l
e
a
n
u
p
>

H
1
:
 
<
h
a
n
d
l
e
r
 
1
>

A
3
:

c
a
l
l
 
R

Q
:

Q
_
C
:
 
<
c
l
e
a
n
u
p
>

A
4
:

P
:

c
a
l
l
 
W

E
2
:

E
1
:

P
_
C
:
 
<
c
l
e
a
n
u
p
>

H
2
:
 
<
h
a
n
d
l
e
r
 
2
>

(
1
)

(
2
)

(
3
)

(
4
)

(
5
)

(
6
)

R a n g e

T a b l e

M

M
_
e
n
d

H
3 /

c
l
e
a
n
u
p
:

p
c
_
h
i
g
h
:

h
a
n
d
l
e
r
:

p
c
_
l
o
w
:

R
e
t
u
r
n

A
d
d
r

D
y
n
a
m
i
c

R
e
t
u
r
n

A
d
d
r

D
y
n
a
m
i
c

R
e
t
u
r
n

A
d
d
r

R
e
t
u
r
n

A
d
d
r

D
y
n
a
m
i
c

R
e
t
u
r
n

A
d
d
r

D
y
n
a
m
i
c

D
y
n
a
m
i
c

L
i
n
k

L
i
n
k

L
i
n
k

L
i
n
k

L
i
n
k

S
t
a
c
k

S
o
u
r
c
e
 
C
o
d
e

O
b
j
e
c
t
 
C
o
d
e

E
1

E
2

H
2

P
_
C

P
_
e
n
d

P /
P
_
C

Q

Q
_
e
n
d

/
Q
_
C

E
3

E
4

H
1

R
_
C

S

S
_
e
n
d

/
S
_
C

P
(
)
;

P
R
O
G
R
A
M
 
M
(
)

E
N
D
 
M

T
R
Y

E
X
C
E
P
T

E
N
D

P
R
O
C
 
P
(
)

Q
(
)

E
N
D
 
P
;

X
1
 
=
>
 
.
.
.

[19] 520—Spring 2005—37

Example — Explanation of Actions

A1∈[S,S end], in Range Table entry (6). (6) has no
handler, so we execute its cleanup routine (S C) and
update PC to the return address, A2.

Since A2∈[E3,E4] in Range Table entry (5), and
(5).handler==H16=NIL, we GOTO H1. This handler
doesn’t handle exception X1, so it will simply re-raise
X1.

Q() has no handler, so we execute its cleanup routine
(Q C) and propagate the exception to P(). I.e. We
update PC to the return address stored in Q’s frame, A4.

Since A4∈[E1,E2] in Range Table entry (2), and
(2).handler=H2, we GOTO H2. This handler catches
X1. ⇒ Done.

[20]



b

20-1

520—Spring 2005—37

Exceptions in C

[21]

520—Spring 2005—37

setjmp/longjmp

In C, setjmp/longjmp can be used to implement
exceptional control flow:

if (!setjmp(buffer)) {
/* setjmp returned 0. Protected code.*/
...
longjmp(buffer);
...

} else {
/* setjmp returned 1. Handler code. */

}

[22] 520—Spring 2005—37

setjmp/longjmp. . .

The first time setjmp returns 0 and execution
continues as normal. When longjmp is called it
appears as if setjmp has returned for the second time,
this time returning 1. The state is now the same as it
was when setjmp was first called.

setjmp’s buffer argument stores the program’s current
state, in particular register values.

Unlike a “real” exception handler, the stack is not
rewound nicely. Rather, all stack frames are thrown
away. This can lead to problems if not all register values
have been saved back in memory. Variables that may
be thus affected should be declared volatile, i.e.
they will always be returned to memory after operated
on.

[23]



520—Spring 2005—37

Readings and References

Read Scott: pp. 464–474

Drew, Gough, Lederman, Implementing Zero Overhead
Exception Handling,
http://www.dstc.qut.edu.au/˜gough/zeroex.ps.

Drew, Gough, Exception handling: Expecting the
Unexpected, Computer Language, Vol 32, No 8, pp.
69–87, 1994.

[24] 520—Spring 2005—37

Summary

The algorithm we’ve shown has no overhead (not even
one instruction), unless an exception is thrown.

The major problem that we need to solve is finding the
procedure descriptor for a particular stack frame.

An alternative implementation would be to store a
pointer in each frame to the appropriate descriptor. The
extra space is negligible, but it would cost 1-2 extra
instructions per procedure call.

[25]

http://www.dstc.qut.edu.au/~gough/zeroex.ps

	Exception Handling
	Exception Handlingldots 
	Exception Handlingldots 
	Exceptions in Modula-3
	Exceptions in Modula-3ldots 
	Exceptions in Modula-3ldots 
	Exceptions in Modula-3ldots 
	Implementation
	The Range Table
	The Range Tableldots 
	Unwinding the Stack (Locate)
	Unwinding the Stack (Locate)ldots

	Unwinding the Stack (Unwind)
	Unwinding the Stack (Unwind)ldots

	The Exception Handler
	The Algorithm
	Example --- Explanation of source code
	Example
	Example --- Explanation of Actions
	Exceptions in C
	setjmp/longjmp
	setjmp/longjmpldots 
	Readings and References
	Summary

