e ——— =

CSc 520

Principles of Programming
Languages
37. Exceptions

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Spring 2005—37 [1]

Exception Handling

¥]

o

o

o

What should a program do if it tries to pop an element
off an empty stack, or divides by 0, or indexes outside
an array, or produces an arithmetic error, such as
overflow?

In C, many procedures will return a status code. In most
cases programmers will “forget” to check this status
flag.

Modern languages have built-in exception handling
mechanisms. When an exception is raised (or thrown) it
must be handled or the program will terminate.

Exceptions can be raised implicitly by the run-time
system (overflow, array bounds errors, etc), or explicitly
by the programmer.

520—Spring 2005—37 [2]

Exception Handling. .

When an exception is raised, the run-time system has
to look for the corresponding handler, the piece of code
that should be executed for the particular exception.

The right handler cannot be determined statically (at
compile-time). Rather, we have to do a dynamic
(run-time) lookup when the exception is raised.

In most languages, you start looking in the current block
(or procedure). If it contains no appropriate handler, you
return from the current routine and re-raise the
exception in the caller. This continues until a handler is
found or until we get to the main program (in which case
the program terminates with an error).

C Chnrinme ONNE 27 2l

Exception Handling. .

o

Y9N Chyr

What happens after an exception handler has been
found and executed?

resumption model Go back to where the exception was
raised and re-execute the statement (PL/I).

termination model Return from the procedure (or unit)
containing the handler (Ada).

e ONNE D7 r1

Exceptions in Modula-3

» Exceptions are declared like this:

| NTERFACE M
EXCEPTI ON Error (TEXT) ;
PROCEDURE P () RAISES {Error};
END M

#® Exceptions can take parameters. In this case, the
parameter to Er r or is a string. Presumably, the
programmer will return the kind of error in this string.

The declaration of P states that it can only raise one
exception, Err or.

» |If there is no RAI SES clause, the procedure is expected
to raise no exceptions.

—Spring 2005—37 [5]

Exceptions in Modula-3. ..

S; and S, can raise exceptions implicitly, or the
programmer can raise an exception explicitly using
RAI SE.

#® When the Er r or -exception is raised, the EXCEPT-block
is searched and the code for the Er r or exception is

executed.
PROCEDURE P () RAISES {Error};
BEGIN
TRY
S1; RAISE Error(“Help!'); S>;
EXCEPT
Error (V) => Write(V); |
Problem (V) => Write(*'No Probs!™); |
ELSE Write("'Unhandled Exception!™);
END;
END P;
520—Spring 2005—37 [6]

Exceptions in Modula-3. ..

An unhandled exception is re-raised in the next
dynamically enclosing TRY-block. If no matching
handler is found the program is terminated.

MODULE M
BEG N
TRY
TRY Sy; EXCEPT
Problem (V) =>Wite(V);
END;
EXCEPT
Error (V) => Wite(V); |
ELSE Wite("Unhandl ed Exception!");
END;
END M

C Chnrinme ONNE 27 -1

Exceptions in Modula-3. ..

An unhandled exception is re-raised in the calling
procedure. Exception handlers can explicitly re-raise an
exception, or raise another exception.

MODULE M
PROCEDURE P ()
BEA N
TRY S1; EXCEPT
Probl em (V) =>RAl SE Error (" OK")
ENDEND P;
BEG N
TRY P(); EXCEPT
Error (V) => Wite(V); |
Problem (V) => Wite(V);
END;
END M

Y9N Cnhrrine O2°NNE 127 rol

Implementation

We want 0-overhead exception handling. This means
that — unless an exception is raised — there should be
no cost associated with the exception handling
mechanism.

We allow raising and handling an exception to be quite
slow.
#® When an exception is raised we need to be able to

1. in the current procedure find the exception handler (if
any) that encloses the statement that raised the
exception, and

2. rewind the stack (pop activation records) until a
procedure with an exception handler is found.

—Spring 2005—37 [9]

The Range Table |

#® We build a RangeTable at compile-time. It has one
entry for each procedure and for each TRY-block.

Each entry holds four addresses: pc_hi gh, pc_| ow,
handl er and cl eanup.

[pclow--pc_hi gh]is the range of addresses for which
handl er is the exception handler.

520—Spring 2005—37 [10]

The RangeTabIe._. .¥

Unwinding the Stack (chate)

Sour ce Code St ack Cbj ect Code
~ P:
EN
PRCC P() El:
TRY i call Q
Ret urn P
) P Addr | B2
,,,,,, - | \
E;CEPT Dynam‘*& Lo H2: <handl er 2>
El => —& Link b P_C: <cl eanup>
o o
END k
END P; AR
Ret ur n Lo call P
PROGRAM M) aire ||| ~e
P(); Mo I <k
[) Dynamc | ! <def aul t
END M W Link handl er >
M @y
;
pc_l ow. M El ! \aa
pc_high:| Mend| E2 ' |- [p
handl er : H3 H gl
cl eanup: / P_C e e

Chnrinmn 2NNE 27

MM11

Let procedure S raise exception E at code address V.
We search the range table to find an entry which covers
V, i.e. for which pc_| ow<=V<=pc_hi gh.

» Entry (6) covers all of procedure S (for Sto S_end),
and hence V. There’s no exception handler for this
range. We just execute S's cleanup code, S_C.

» S _Cwill restore saved registers, etc, and deallocate the
activation record.

Y9N Cnhrrine O2°NNE 127 Mo

Unwinding the Stack (Loqate). ..

Sour ce Code St ack Obj ect Code
S:
PROC S() S Return
RAI SE E1 Addr @ V. RAI SE E1
END R
Dynam ¢ 4 S_C <cl eanup>
B Link !
|
(5) (6)
pc_l ow. E3 s |RT
pc_high:| E4 Send | & z‘
handl er: H1 / ! 3 I
cl eanup: RC SC'|lee
—Spring 2005—37 [13]

Unwinding the Stack (Unwind)

Since Sdidn’'t have a handler, we must unwind the
stack until one is found.

S'sreturn address is K, which is covered by entry (5) in
the range table. Entry (5) has a handler defined (at
address H1). Run it!

520—Spring 2005—37 [14]

Unwinding the Stack (Unwind). .

Sour ce Code St ack Cbj ect Code
S
PROC S() S Return
RAI SE E1 Addr V: RAISE El
END R ATe
Dynani ¢ S _C. <cl eanup>
PRCC R() M Link
TRY R K
S() R E3: -
Y Return ~—cal Ié§/,
EXCEPT Addr @ g @
B2 = ... EynLgmkc Hl: <handler 1>
ENSNB; tn R C. <cl eanup>
(5) (6)
pc_l ow: E3 S RT
pc_high:| E4 S end ‘;’1‘ z
handl er: HL / gl
cl eanup: R C SC e e

Chnrinmn 2NNE 27 rMci

The Exception Handler

The exception handler itself can be translated as a
sequential search.

» If the TRY-EXCEPT-block has no ELSE part, the default
action will be to re-raise the exception.

TRY St
St RAI SE e¢;
RAI SE ¢; S9;
S9; iIF e=F, THEN H;
EXCEPT ELSIF e=Fy, THEN Hs
Ey == H; | ELSE
Ey => Hy | RAI SE ¢
END; ENDI F;

) TheAIgorithm B

LOOP

D := The first procedure descriptor (Range Table
entry) such that D.pc.low <= PC <= D. pc_hi gh;

IF D.handl er = the default handl er THEN
abort and coredunp

ELSIF D. handler # NIL THEN GOTO D. handl er;

ELSE

Execute the cl eanup routine D.cl eanup;
PC :
SP :
FP :

END,
END;

—Spring 2005—37

(17]

Return address stored in the current frame;
SP of previous frane;
FP of previous frane;

Example — Explanation of source code

e

°

Consider the example on the next slide.

The main program calls procedure P() . There is a
<def aul t handl er > defined for the program at
address H3.

Procedure P() calls Q) . Exception X1 is caught by the
handler at address H2.

Q) callsR().

R() calls S() . Exception X2 is caught by the handler at
address HL.

S() throws exception X1 at address Al.

520—Spring 2005—37 [18]

24 S 8 Sa
e =2 52 ®: 5 2 A
3
§| 23| o® s8|| =0¢ :® 3§ .0 -5
- Q - o -0 S .. 33
S SV ‘—ug gy EQV :g 29 -2 &2
) 20 S VO o s] v] o ©
— 5 5 (&) o o kel
Stnmﬁ:'m/ﬁim‘o' o’mﬂ/ﬁ?a'g)g
- » : > :
x E£3E§ 5&3.Eé 5&3;% E&E-Eé ce
s 2583 25'€3| 2583 25843 25!
n|&%5w| E%icw|| E3s5e| ERsw | EE
%] o (04 o
5} . X
o . . —~
8| % oA A s
® %% g %H 8 = E“ s
o D >~ o = o2 Jdaa iy
= Fr @R = rU@exX9n
§ §§% §P— el §“.% §'— 0" &g
o U||a Gl o wil a @ a
C Chnrinme ONNE 27 Mal

(4)

(3)

(2)

(1)

RT

aa

nb

gl
ee

Example — Explanation of Actions

(6)

S
S_end

SC

/

(5)

E3

E4

HL
R C

Q.end

/
QcC

P_end

/
" C

P

El

E2

H2
P_

C

M

M end

H3

pc_hi gh:
pc_l ow

handl er:
cl eanup:

o

Y9N Chrri

Al€[S, S.end], in Range Table entry (6) . (6) has no
handler, so we execute its cleanup routine (S_C) and
update PCto the return address, A2.

Since A2¢[E3, E4] in Range Table entry (5) , and
(5). handl er ==H1+#NI L, we GOTO H1. This handler
doesn’t handle exception X1, so it will simply re-raise
X1.

Q) has no handler, so we execute its cleanup routine
(Q.0) and propagate the exceptionto P() . l.e. We
update PCto the return address stored in Qs frame, A4.

Since Ad€[E1, E2] in Range Table entry (2) , and
(2). handl er =H2, we GOTO H2. This handler catches
X1. = Done.

ne ONNE 27 nl

T-0¢

Exceptions in C

520—Spring 2005—37 [21]

semp/longimp

® InC, setjnp/longjnp can be used to implement

exceptional control flow:

if (!setjnp(buffer)) {
/[* setjnp returned 0. Protected code.*/

ibﬁgj np(buffer);
} else

}

/* setjnp returned 1.

C Chnrinme ONNE 27

rHnl

Handl er

code.

*/

seyympflongimp....

The first time set j np returns 0 and execution

cHoNn ©

continues as normal. When | ongj np is called it
appears as if set j np has returned for the second time,
this time returning 1. The state is now the same as it
was when set j np was first called.

set j np’s buffer argument stores the program’s current
state, in particular register values.

Unlike a “real” exception handler, the stack is not
rewound nicely. Rather, all stack frames are thrown
away. This can lead to problems if not all register values
have been saved back in memory. Variables that may
be thus affected should be declared vol ati | e, i.e.
they will always be returned to memory after operated
on.

rim ONNE 27 rHnl

Readings and References - Summary

Read Scott: pp. 464-474 # The algorithm we’ve shown has no overhead (not even

» Drew, Gough, Lederman, Implementing Zero Overhead one instruction), unless an exception is thrown.
Exception Handling, # The major problem that we need to solve is finding the
http://ww.dstc.qut.edu.au/~gough/zeroex.ps. procedure descriptor for a particular stack frame.

» Drew, Gough, Exception handling: Expecting the # An alternative implementation would be to store a
Unexpected, Computer Language, Vol 32, No 8, pp. pointer in each frame to the appropriate descriptor. The
69-87, 1994. extra space is negligible, but it would cost 1-2 extra

instructions per procedure call.

—Spring 2005—37 [24] 520—Spring 2005—37 [25]

http://www.dstc.qut.edu.au/~gough/zeroex.ps

	Exception Handling
	Exception Handlingldots
	Exception Handlingldots
	Exceptions in Modula-3
	Exceptions in Modula-3ldots
	Exceptions in Modula-3ldots
	Exceptions in Modula-3ldots
	Implementation
	The Range Table
	The Range Tableldots
	Unwinding the Stack (Locate)
	Unwinding the Stack (Locate)ldots

	Unwinding the Stack (Unwind)
	Unwinding the Stack (Unwind)ldots

	The Exception Handler
	The Algorithm
	Example --- Explanation of source code
	Example
	Example --- Explanation of Actions
	Exceptions in C
	setjmp/longjmp
	setjmp/longjmpldots
	Readings and References
	Summary

