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Dynamic Memory Management

The run-time system linked in with the generated code
should contain routines for allocation/deallocation of
dynamic memory.

Pascal, C, C++, Modula-2 Explicit deallocation of dynamic
memory only. I.e. the programmer is required to keep
track of all allocated memory and when it’s safe to free
it.

Eiffel Implicit deallocation only. Dynamic memory which is
no longer used is recycled by the garbage collector.

Ada Implicit or explicit deallocation (implementation
defined).

Modula-3 Implicit and explicit deallocation (programmer’s
choice).
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Memory Management

In a language such as C or Pascal, there are three
ways to allocate memory:
1. Static allocation. Global variables are allocated at

compile time, by reserving
2. Stack allocation. The stack is used to store

activation records, which holds procedure call chains
and local variables.

3. Dynamic allocation. The user can create new
memory at will, by calling a new or (in unix) malloc
procedure.

The compiler and run-time system divide the available
address space (memory) into three sections, one for
each type of allocation:
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Memory Management. . .

1. The static section is generated by the compiler and
cannot be extended at run-time. Called the
uninitialized data section in unix’s a.out.

2. The stack. The stack grows and shrinks during
execution, according to the depth of the call chain.
Infinite recursion often leads to stack overflow. Large
parameters can also result in the program running
out of stack space.

3. The heap. When the program makes a request for
more dynamic memory (by calling malloc, for
example), a suitable chunk of memory is allocated
on the heap.
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Memory Management. . .

Static allocation – Global
variables

Stack allocation – Procedure
call chains, Local variables.

Dynamic allocation – NEW,
malloc, On the heap.

Uninitialized Data

(Global Variables)

Initialized Data

(strings,reals...)

Program Code

Stack

Heap

[5] 520—Spring 2005—38

Interface to Dynamic allocation

C, C++: char* malloc(size) and free(char*) are
standard library routines.

Pascal: new(pointer var) and dispose(pointer
var) are builtin standard procedures.

Java: new(class name) is a standard function.

LISP: cons creates new cells:

null

b

c null

a

b
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’(b c) ’(a b c)

TailHead

(cons ’a ’(b c))
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Explicit Deallocation

Pascal’s new/dispose, Modula-2’s
ALLOCATE/DEALLOCATE, C’s malloc/free, C++’s
new/delete, Ada’s new/unchecked deallocation
(some implementations).

Problem 1: Dangling references: p=malloc(); q=p;
free(p);.

Problem 2: Memory leaks, Heap fragmentation.

free list:

free list:
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Memory Leaks

DEFINITION MODULE Complex;

TYPE T;

PROCEDURE Create (Re, Im : REAL) : T;

PROCEDURE Add (A, B : T) : T;

END Complex.

IMPLEMENTATION MODULE Complex;

TYPE T = POINTER TO RECORD

Re, Im : REAL; END;

PROCEDURE Create (Re, Im : REAL) : T;

BEGIN

NEW(x); x↑.Re := Re; x↑.Im := Im;

RETURN x; END Create;

PROCEDURE Add (A, B : T) : T;

BEGIN

NEW(x); x↑.Re := · · ·; x↑.Im := · · ·;

RETURN x; END Add;

END Complex;
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Memory Leaks. . .

MODULE Use;

IMPORT Complex;

VAR a,b,c,d : Complex.T;

BEGIN

a := Complex.Create(1.0, 2.4);

b := Complex.Create(3.4, 4.0);

c := Complex.Create(9.4, 6.6);

d := Complex.Add(a,Complex.Add(b,c));

END Use.

Complex.Add(b, c) creates a new object which can never be reclaimed.
c dba

1.0 3.4 9.4 12.8 13.8

2.4 4.0 6.6 10.6 13.0
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Fragmentation

VAR a, b, c, d : POINTER TO

ARRAY [1..1000] OF BYTE;

VAR x : POINTER TO

ARRAY [1..2000] OF BYTE;

BEGIN

NEW(a); NEW(b); NEW(c); NEW(d);

DISPOSE(a); DISPOSE(c); NEW(x);

1000 1000 1000

c dba x

Free list:

Heap

Without compaction the last allocation will fail, even though enough memory is
available.
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Implicit Deallocation

LISP, Prolog – Equal-sized cells; No changes to old
cells.

Eiffel, Modula-3 – Different-sized cells; Frequent
changes to old cells.

When do we GC?
Stop-and-copy Perform a GC whenever we run out of

heapspace (Modula-3).
Real-time/Incremental Perform a partial GC for each

pointer assignment or new (Eiffel, Modula-3).
Concurrent Run the GC in a separate process.
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Implicit Deallocation. . .

Fragmentation – Compact the heap as a part of the GC,
or only when the GC fails to return a large enough
block.

Algorithms: Reference counts, Mark/ssweep, Copying,
Generational.
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Algorithm: Reference Counts

An extra field is kept in each object containing a count
of the number of pointers which point to the object.

Each time a pointer is made to point to an object, that
object’s count has to be incremented.

Similarly, every time a pointer no longer points to an
object, that object’s count has to be decremented.

When we run out of dynamic memory we scan through
the heap and put objects with a zero reference count
back on the free-list.

Maintaining the reference count is costly. Also, circular
structures (circular linked lists, for example) will not be
collected.
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Algorithm: Reference Counts. . .

Every object records the number of pointers pointing to it.

When a pointer changes, the corresponding object’s reference count has to be
updated.

GC: reclaim objects with a zero count. Circular structures will not be
reclaimed.
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Algorithm: Reference Counts. . .

NEW(p) is implemented as:
malloc(p); p↑.rc := 0;

p↑.next:=q is implemented as:
z := p↑.next;
if z 6= nil then

z↑.rc--; if z↑.rc = 0 then reclaim z↑ endif;
endif;
p↑.next := q;
q↑.rc++;

This code sequence has to be inserted by the compiler
for every pointer assignment in the program. This is
very expensive.
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Readings and References

Read Scott, pp. 395–401.

Apple’s Tiger book, pp. 257–282

Topics in advanced language implementation, Chapter
4, Andrew Appel, Garbage Collection. Chapter 5, David
L. Detlefs, Concurrent Garbage Collection for C++.
ISBN 0-262-12151-4.

Aho, Hopcroft, Ullman. Data Structures and Algorithms,
Chapter 12, Memory Management.
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Readings and References. . .

Nandakumar Sankaran, A Bibliography on Garbage
Collection and Related Topics, ACM SIGPLAN Notices,
Volume 29, No. 9, Sep 1994.

J. Cohen. Garbage Collection of Linked Data
Structures, Computing Surveys, Vol. 13, No. 3, pp.
677–678.
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