
520—Spring 2005—39

CSc 520

Principles of Programming
Languages

39: Garbage Collection — Mark and Sweep

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—39

Garbage Collection Issues

[2]

520—Spring 2005—39

Finding the Object Graph

Finding the roots: The dynamic objects in a program form a
graph. Most GC algorithms need to traverse this graph.
The roots of the graph can be in
1. global variables
2. registers
3. local variables/formal parameters on the stack.
Hence, the compiler must communicate to the GC
which registers/variables contain roots.

[3] 520—Spring 2005—39

Finding the Object Graph. . .

Finding internal pointers: Structured variables (arrays,
records, objects) may contain internal pointers. These
must be known to the GC so that it can traverse the
graph. Hence, the compiler must communicate to the
GC the type of each dynamic object and the internal
structure of each type.

Finding the beginning of objects: What happens if the only
pointer to an object points somewhere in the middle of
the object? We must either be able to find the beginning
of the object, or make sure the compiler does not
generate such code.

[4]



520—Spring 2005—39

Finding the Object Graph. . .

A

C

%r8

Execution

Stack

for

AR

P

for

AR

Q

for

AR

R

template

G

Globals

Ptrs: [12]

Size:96

Template for P

Ptrs: [0]

Size:4

Template for MAIN

Size:32

Ptrs: [4,12]

Template for T1

Ptrs: [8]

Size: 24

Template for T2

Heap

O: template

O: template

8:

12:

O: template

8:

8:

[5] 520—Spring 2005—39

Pointer Maps

The internal structure of activation records & structured
variables is described by run-time templates.

Every run-time object has an extra word that points to a
type descriptor (or Temaplate), a structure describing
which words in the object are pointers. This map is
constructed at compile-time and stored statically in the
data segment of the executable.

[6]

520—Spring 2005—39

Pointer Maps. . .

When the GC is invoked, registers may also contain
valid pointers. The compiler must therefore also
generate (for every point where the GC may be called)
a pointer map that describes which registers hold live
pointers at this point. For this reason, we usually only
allow the GC to run at certain points, often the points
where new is called.

We must also provide pointer maps for every function
call point. A function P may call Q which calls new
which invokes the GC. We need to know which words in
P ’s activation record that at this point contain live
pointers.

[7] 520—Spring 2005—39

Pointer Maps. . .

How does the GC look up which pointer map belongs to
a particular call to procedure P at a particular address
a? The pointer maps are indexed by the return address
of P ! So, to traverse the stack of activation records, the
GC looks at each frame, extracts the return address,
finds the pointer map for that address, and extracts
each pointer according to the map.

[8]



520—Spring 2005—39

The Mark-and-Sweep Algorithm

[9] 520—Spring 2005—39

Algorithm: Mark and Sweep

The basic idea behind Mark-and-Sweep is to traverse
and mark all the cells that can be reached from the root
cells.

A root cell is any pointer on the stack or in global
memory which points to objects on the heap.

Once all the live cells (those which are pointed to by a
global variable or some other live cells) have been
marked, we scan through the heap and separate the
live data from the garbage.

If we are dealing with equal size objects only (this is
the case in LISP, for example) the we scan the heap
and link all the unmarked objects onto the free list.
At the same time we can unmark the live cells.

[10]

520—Spring 2005—39

Algorithm: Mark and Sweep. . .

If we have cells of different sizes, just linking the
freed objects together may result in heap
fragmentation. Instead we need to compact the
heap, by collecting live cells together in a contiguous
memory area on the heap and doing the same with
the garbage cells in another area.

[11] 520—Spring 2005—39

Algorithm: Mark and Sweep. . .

Marking Phase:
1. Mark all objects unmarked.

2. Find all roots, i.e. heap pointers in stack, regs & globals.

3. Mark reachable blocks using a depth first search
starting at the roots.

(a) DFS may run out of stack space!
(b) Use non-recursive (Deutsch-Schorr-Waite) DFS.

Scanning Phase:

same-size-cells Scan heap and put un-marked
(non-reachable) cells back on free-list.

different-size-cells Compact the heap to prevent
fragmentation.

[12]



520—Spring 2005—39

Marking Phase

A straight-forward implementation of mark and sweep
may run into memory problems itself! A
depth-first-search makes use of a stack, and the size of
the stack will be the same as the depth of the object
graph.

Remember that the stack and the heap share the same
memory space, and may even grow towards eachother.

So, if we’re out of luck we might run into this situation:
the heap is full (otherwise we wouldn’t be gc:ing!),
the object graph is deep,
we run out of stack space during the marking phase.

We’re now out of memory alltogether. Difficult to
recover from!

[13] 520—Spring 2005—39

Marking Phase. . .

Fortunately, there is a smart algorithm for marking in
constant space, called the Deutsch-Schorr-Waite
algorithm. Actually, it was developed simultaneously by
Peter Deutsch and by Herbert Schorr and W. M. Waite.

The basic idea is to store the DFS stack in the object
graph itself. When a new node (object) is encountered
1. we set the “marked”-bit to 1,
2. the node (object) is made to point to the previous

node,
3. two global variables current and previous are

updated.
current points to the current cell, previous to the
previously visited cell.

[14]

520—Spring 2005—39

Marking: “Look Ma, No Stack!”

Use pointer reversal to encode the DFS stack in the
object graph itself.

When the DFS reaches a new cell, change a pointer in
the cell to point back to the DFS parent cell. When we
can go no deeper, return, following the back links,
restoring the links.

(1)

(2)

/

(3)

/

(1)

M

(2) (3)

// B B

M M

current

previous

B = Back Pointer

M = Marked

(4)
(5)

/ /

(4)
(5)

/ /

M

[15] 520—Spring 2005—39

Marking: “Look Ma, No Stack!”. . .
LOOP

CASE 1: current’s fields are not Done

i := next field of current

that’s not Done;

next := current↑ .fi;

IF next↑ isn’t marked THEN

current↑ .fi := previous;

previous := current;

current := next;

ENDIF;

CASE 2: current’s fields are Done

next := current;

current := previous;

i := next field of current

that’s not Done;

previous := current↑ .fi;

current↑ .fi := next;

ENDLOOP
[16]



520—Spring 2005—39

Marking: “Look Ma, No Stack!”. . .

f2Done:2

Marked:2
√

Done:2
√

f1

f1

f2Done:2

f1

f2

f3

Done:2

Done:2

Done:2

Marked:2
√

Done:2
√

Marked:2
√

f1

f2

Done:2

Done:2

Marked:2

next
current

previous

f1

f2

f3

Done:2

Done:2

Done:2

Marked:2
√

previous

f1

f2

Done:2

Done:2

Marked:2
√

current

⇓ Case 1

[17] 520—Spring 2005—39

Marking: “Look Ma, No Stack!”. . .

f1

f2

f3

Marked:2
√

Done:2
√

Done:2
√

Done:2
√

f2

Marked:2
√

Done:2
√

f1

Done:2
√

current next

f1

Marked:2
√

f2

f3

Done:2
√

Done:2
√

Done:2
√

f1

f2

Done:2
√

Done:2

Marked:2
√

previous

next

current

⇓ Case 2

[18]

520—Spring 2005—39

Sweeping: Compaction

A B C ED F

data1 data2 data3

data1 data2 data3

A B C ED F

Compaction

1. Calculate the forwarding address of each cell.

2. Store the forwarding address of cell B in B.forw addr.

3. If p points to cell B, replace p with B.forw addr.

4. Move all cells to their forwarding addresses.

[19] 520—Spring 2005—39

Readings and References

Read Scott, pp. 395–401.

[20]


	Garbage Collection Issues
	Finding the Object Graph
	Finding the Object Graphldots 
	Finding the Object Graphldots 
	Pointer Maps
	Pointer Mapsldots 
	Pointer Mapsldots 
	The Mark-and-Sweep Algorithm
	Algorithm: Mark and Sweep
	Algorithm: Mark and Sweepldots 
	Algorithm: Mark and Sweepldots 
	Marking Phase
	Marking Phaseldots 
	Marking: ``Look Ma, No Stack!''
	Marking: ``Look Ma, No Stack!''ldots 
	Marking: ``Look Ma, No Stack!''ldots 
	Marking: ``Look Ma, No Stack!''ldots 
	Sweeping: Compaction
	Readings and References

