
520—Spring 2005—4

CSc 520

Principles of Programming
Languages

4: Scheme — History

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—4

History of the Lisp Language

http://www.apl.jhu.edu/˜hall/text/Papers/Brief-History-of-Lisp.ps

The following information is derived from the history section of dpANS Common
Lisp.

Lisp is a family of languages with a long history. Early key ideas in Lisp were
developed by John McCarthy during the 1956 Dartmouth Summer Research
Project on Artificial Intelligence. McCarthy’s motivation was to develop analgebraic
list processing language for artificial intelligence work. Implementation efforts for
early dialects of Lisp were undertaken on the IBM 704, the IBM 7090, the Digital
Equipment Corporation (DEC) PDP-1, the DECPDP-6, and the PDP-10. The
primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s
there were two predominant dialects of Lisp, both arising from these early efforts:
MacLisp and Interlisp. Forfurther information about very early Lisp dialects, see
The Anatomy of Lisp or Lisp 1.5 Programmer’s Manual.

[2]

520—Spring 2005—4

History of the Lisp Language. . .

MacLisp improved on the Lisp 1.5 notion of special variables and error handling.
MacLisp also introduced theconcept of functions that could take a variable number
of arguments, macros, arrays, non-local dynamic exits, fast arithmetic, the first
good Lisp compiler, and an emphasis on execution speed.

Interlisp introduced many ideas into Lisp programming environments and
methodology. One of the Interlisp ideasthat influenced Common Lisp was an
iteration construct implemented by Warren Teitelman that inspired the loop macro
used both on the Lisp Machines and in MacLisp, and now in Common Lisp.

[3] 520—Spring 2005—4

History of the Lisp Language. . .

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090,
later work focussed on theDEC PDP-6 and, later, PDP-10 computers, the latter
being the mainstay of Lisp and artificial intelligence work at such places as
Massachusetts Institute of Technology (MIT), Stanford University, and Carnegie
Mellon University(CMU) from the mid-1960’s through much of the 1970’s. The
PDP-10 computer and its predecessor the PDP-6 computer were, by design,
especially well-suited to Lisp because they had 36-bit words and 18-bit addresses.
Thisarchitecture allowed a cons cell to be stored in one word; single instructions
could extract the car and cdr parts. The PDP-6 and PDP-10 had fast, powerful
stack instructions that enabled fast function calling. But the limitations ofthe
PDP-10 were evident by 1973: it supported a small number of researchers using
Lisp, and the small, 18-bit address space (262,144 36-bit words) limited the size of
a single program. One response to the address spaceproblem was the Lisp
Machine, a special-purpose computer designed to run Lisp programs. The other
response was to use general-purpose computers with address spaces larger than
18 bits, such as the DEC VAX and the S-1 MarkIIA.

[4]

http://www.apl.jhu.edu/~hall/text/Papers/Brief-History-of-Lisp.ps


520—Spring 2005—4

History of the Lisp Language. . .

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s,
Peter Deutsch, working withDaniel Bobrow, implemented a Lisp on the Alto, a
single-user minicomputer, using microcode to interpret a byte-code
implementation language. Shortly thereafter, Richard Greenblatt began work on a
different hardwareand instruction set design at MIT. Although the Alto was not a
total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became
available on the D-series machines manufactured by Xerox—the
Dorado,Dandelion, Dandetiger, and Dove (or Daybreak). An upward-compatible
extension of MacLisp called Lisp Machine Lisp became available on the early MIT
Lisp Machines. Commercial Lisp machines from Xerox, LispMachines (LMI), and
Symbolics were on the market by 1981. During the late 1970’s, Lisp Machine Lisp
began to expand towards a much fuller language. Sophisticated lambdalists, setf,
multiple values, and structures like those in Common Lisp are the results of early
experimentation with programming styles by the Lisp Machine group.

[5] 520—Spring 2005—4

History of the Lisp Language. . .

Jonl White and others migrated these features to MacLisp. Around 1980, Scott
Fahlman and others at CMU began work on a Lisp to run on the Scientific
Personal Integrated Computing Environment (SPICE) workstation. One of the
goals of the project was to design a simpler dialect thanLisp Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New
Implementation of Lisp (NIL)for the VAX, which was headed by White. One of the
stated goals of the NIL project was to fix many of the historic, but annoying,
problems with Lisp while retaining significant compatibility with MacLisp.

[6]

520—Spring 2005—4

History of the Lisp Language. . .

Richard P. Gabriel began the design of a Lisp to run on the S-1 Mark IIA
supercomputer. S-1 Lisp, nevercompletely functional, was the test bed for
adapting advanced compiler techniques to Lisp implementation. Eventually the
S-1 and NIL groups collaborated.

The first effort towards Lisp standardization was made in 1969, when Anthony
Hearn and Martin Griss at theUniversity of Utah defined Standard Lisp—a subset
of Lisp 1.5 and other dialects—to transport REDUCE, a symbolic algebra system.
During the 1970’s, the Utah group implemented first a retargetable optimizing
compilerfor Standard Lisp, and then an extended implementation known as
Portable Standard Lisp (PSL). By the mid 1980’s, PSL ran on about a dozen kinds
of computers.

[7] 520—Spring 2005—4

History of the Lisp Language. . .

PSL and Franz Lisp—a MacLisp-like dialect for Unix machines—were the first
examples of widely availableLisp dialects on multiple hardware platforms. One of
the most important developments in Lisp occurred during the second half of the
1970’s: Scheme. Scheme,designed by Gerald J. Sussman and Guy L. Steele Jr.,
is a simple dialect of Lisp whose design brought to Lisp some of the ideas from
programming language semantics developed in the 1960’s. Sussman was one of
the primeinnovators behind many other advances in Lisp technology from the late
1960’s through the 1970’s. The major contributions of Scheme were lexical
scoping, lexical closures, first-class continuations, and simplified syntax
(noseparation of value cells and function cells). Some of these contributions made
a large impact on the design of Common Lisp. For further information about
Scheme, see IEEE Standard for the Scheme Programming Languageor “Revised4

Report on the Algorithmic Language Scheme.”

[8]



520—Spring 2005—4

History of the Lisp Language. . .

In the late 1970’s object-oriented programming concepts started to make a strong
impact on Lisp. At MIT, certainideas from Smalltalk made their way into several
widely used programming systems. Flavors, an object-oriented programming
system with multiple inheritance, was developed at MIT for the Lisp machine
community byHoward Cannon and others. At Xerox, the experience with Smalltalk
and Knowledge Representation Language (KRL) led to the development of Lisp
Object Oriented Programming System (LOOPS) and later Common LOOPS.
These systems influenced the design of the Common Lisp Object System (CLOS).
CLOS was developedspecifically for X3J13’s standardization effort, and was
separately written up in “Common Lisp Object System Specification.” However,
minor details of its design have changed slightly since that publication, and that
papershould not be taken as an authoritative reference to the semantics of the
Common Lisp Object System.

[9] 520—Spring 2005—4

History of the Lisp Language. . .

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware
implementation groups weredeveloping NIL, Franz Lisp, and PSL; Xerox was
developing Interlisp; and the SPICE project at CMU was developing a MacLisp-like
dialect of Lisp called SpiceLisp. In April 1981, after a DARPA-sponsored meeting
concerning the splintered Lisp community, Symbolics, theSPICE project, the NIL
project, and the S-1 Lisp project joined together to define Common Lisp. Initially
spearheaded by White and Gabriel, the driving force behind this grassroots effort
was provided by Fahlman, DanielWeinreb, David Moon, Steele, and Gabriel.
Common Lisp was designed as a description of a family of languages. The
primary influences on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-1
Lisp, Spice Lisp, andScheme. Common Lisp: The Language is a description of
that design. Its semantics were intentionally underspecified in places where it was
felt that a tight specification would overly constrain Common Lisp researchand use.

[10]

520—Spring 2005—4

History of the Lisp Language. . .

In 1986 X3J13 was formed as a technical working group to produce a draft for an
ANSI Common Lisp standard.Because of the acceptance of Common Lisp, the
goals of this group differed from those of the original designers. These new goals
included stricter standardization for portability, an object-oriented programming
system, acondition system, iteration facilities, and a way to handle large character
sets. To accommodate those goals, a new language specification was developed.

[11] 520—Spring 2005—4

John McCarthy

John McCarthy has been Professor of Computer Science at
Stanford University since 1962. His research is mainly in
artificial intelligence. Long ago he originated the Lisp
programming language and the initial research on general
purpose time-sharing computer systems.
http://www-formal.stanford.edu/jmc/personal.html

[12]

http://www-formal.stanford.edu/jmc/personal.html


520—Spring 2005—4

Guy Steele

Guy L. Steele Jr. is a Distinguished Engineer at Sun Microsystems, Inc. He
received his A.B. in applied mathematics from Harvard College (1975), and his
S.M. and Ph.D. in computer science and artificial intelligence from M.I.T. (1977
and 1980). He has also been an assistant professor of computer science at
Carnegie-Mellon University; a member of technical staff at Tartan Laboratories in
Pittsburgh, Pennsylvania; and a senior scientist at Thinking Machines Corporation.
He joined Sun Microsystems in 1994.

[13] 520—Spring 2005—4

Guy Steele. . .

The Association for Computing Machinery awarded him the 1988 Grace Murray
Hopper Award and named him an ACM Fellow in 1994.

He has served on accredited standards committees X3J11 (C language) and X3J3
(Fortran) and is currently chairman of X3J13 (Common Lisp). He was also a
member of the IEEE committee that produced the IEEE Standard for the Scheme
Programming Language, IEEE Std 1178-1990.

He has had chess problems published in Chess Life and Review and is a Life
Member of the United States Chess Federation. He has sung in the bass section
of the MIT Choral Society and the Masterworks Chorale as well as in choruses
with the Pittsburgh Symphony Orchestra at Great Woods and with the Boston
Concert Opera. He has played the role of Lun Tha in The King and I and the title
role in Li’l Abner. He designed the original EMACS command set and was the first
person to port TeX.

http://www.sls.csail.mit.edu/˜hurley/guysteele.html

http://encyclopedia.thefreedictionary.com/Guy%20Steele

[14]

520—Spring 2005—4

Gerald Jay Sussman

Gerald Jay Sussman is the Matsushita Professor of Electrical Engineering at the
Massachusetts Institute of Technology. He received the S.B. and the Ph.D.
degrees in mathematics from the Massachusetts Institute of Technology in 1968
and 1973, respectively. He has been involved in artificial intelligence research at
M.I.T. since 1964. His research has centered on understanding the
problem-solving strategies used by scientists and engineers, with the goals of
automating parts of the process and formalizing it to provide more effective
methods of science and engineering education. Sussman has also worked in
computer languages, in computer architecture and in VLSI design.

[15] 520—Spring 2005—4

Gerald Jay Sussman. . .

Sussman is a coauthor (with Hal Abelson and Julie Sussman) of the introductory
computer science textbook used at M.I.T. The textbook, "Structure and
Interpretation of Computer Programs," has been translated into French, German,
Chinese, Polish, and Japanese. As a result of this and other contributions to
computer-science education, Sussman received the ACM’s Karl Karlstrom
Outstanding Educator Award in 1990, and the Amar G. Bose award for teaching in
1991.

Sussman’s contributions to Artificial Intelligence include problem solving by
debugging almost-right plans, propagation of constraints applied to electrical
circuit analysis and synthesis, dependency-based explanation and
dependency-based backtracking, and various language structures for expressing
problem-solving strategies. Sussman and his former student, Guy L. Steele Jr.,
invented the Scheme programming language in 1975.

http://www.swiss.ai.mit.edu/˜gjs/gjs.html

[16]

http://www.sls.csail.mit.edu/~hurley/guysteele.html
http://encyclopedia.thefreedictionary.com/Guy%20Steele
http://www.swiss.ai.mit.edu/~gjs/gjs.html


520—Spring 2005—4

Beating the Averages

Paul Graham
(This article is based on a talk given at the Franz Developer
Symposium in Cambridge, MA, on March 25, 2001.)
http://paulgraham.com/avg.html

In the summer of 1995, my friend Robert Morris and I
started a startup called Viaweb. Our plan was to write
software that would let end users build online stores. What
was novel about this software, at the time, was that it ran on
our server, using ordinary Web pages as the interface. [· · ·]
Another unusual thing about this software was that it was
written primarily in a programming language called Lisp.

[17] 520—Spring 2005—4

Beating the Averages

It was one of the first big end-user applications to be written
in Lisp, which up till then had been used mostly in
universities and research labs. Lisp gave us a great
advantage over competitors using less powerful languages.
A company that gets software written faster and better will,
all other things being equal, put its competitors out of
business. And when you’re starting a startup, you feel this
very keenly. Startups tend to be an all or nothing
proposition. You either get rich, or you get nothing. [· · ·]
Robert and I both knew Lisp well, and we couldn’t see any
reason not to trust our instincts and go with Lisp. We knew
that everyone else was writing their software in C++ or Perl.
But we also knew that that didn’t mean anything. If you
chose technology that way, you’d be running Windows. [· · ·]

[18]

520—Spring 2005—4

Beating the Averages

So you could say that using Lisp was an experiment. Our
hypothesis was that if we wrote our software in Lisp, we’d
be able to get features done faster than our competitors,
and also to do things in our software that they couldn’t do.
And because Lisp was so high-level, we wouldn’t need a
big development team, so our costs would be lower. [· · ·]
What were the results of this experiment? Somewhat
surprisingly, it worked. We eventually had many
competitors, on the order of twenty to thirty of them, but
none of their software could compete with ours. We had a
wysiwyg online store builder that ran on the server and yet
felt like a desktop application. Our competitors had cgi
scripts. And we were always far ahead of them in features.
Sometimes, in desperation, competitors would try to
introduce features that we didn’t have.

[19] 520—Spring 2005—4

Beating the Averages

But with Lisp our development cycle was so fast that we
could sometimes duplicate a new feature within a day or
two of a competitor announcing it in a press release. By the
time journalists covering the press release got round to
calling us, we would have the new feature too.
[· · ·]by word of mouth mostly, we got more and more users.
By the end of 1996 we had about 70 stores online. At the
end of 1997 we had 500. Six months later, when Yahoo
bought us, we had 1070 users. Today, as Yahoo Store, this
software continues to dominate its market. [· · ·]
I’ll begin with a shockingly controversial statement:
programming languages vary in power.

[20]

http://paulgraham.com/avg.html


520—Spring 2005—4

Beating the Averages

Few would dispute, at least, that high level languages are
more powerful than machine language. Most programmers
today would agree that you do not, ordinarily, want to
program in machine language. Instead, you should program
in a high-level language, and have a compiler translate it
into machine language for you. This idea is even built into
the hardware now: since the 1980s, instruction sets have
been designed for compilers rather than human
programmers. [· · ·]
During the years we worked on Viaweb I read a lot of job
descriptions. A new competitor seemed to emerge out of
the woodwork every month or so. The first thing I would do,
after checking to see if they had a live online demo, was
look at their job listings. After a couple years of this I could
tell which companies to worry about and which not to.

[21] 520—Spring 2005—4

Beating the Averages

[· · ·] The safest kind were the ones that wanted Oracle
experience. You never had to worry about those. You were
also safe if they said they wanted C++ or Java developers.
If they wanted Perl or Python programmers, that would be a
bit frightening– that’s starting to sound like a company
where the technical side, at least, is run by real hackers. If I
had ever seen a job posting looking for Lisp hackers, I
would have been really worried. [· · ·]

Exercise
sed ’s/Lisp/Scheme/g’

[22]


	History of the Lisp Language
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	History of the Lisp Languageldots 
	John McCarthy
	Guy Steele
	Guy Steeleldots 
	Gerald Jay Sussman
	Gerald Jay Sussmanldots 
	Beating the Averages
	Beating the Averages
	Beating the Averages
	Beating the Averages
	Beating the Averages
	Beating the Averages

