CSc 520

Principles of Programming
L anguages
40: Garbage Collection — Copying Collection

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Spring 2005—40 [1]

Copying Col I\ection*

» Even if most of the heapspace is garbage, a mark and
sweep algorithm will touch the entire heap. In such
cases it would be better if the algorithm only touched
the live objects.

Copying collection is such an algorithm. The basic idea
Is:

1. The heap is divided into two spaces, the from-space
and the to-space.

2. We start out by allocating objects in the from-space.

3. When from-space is full, all live objects are copied
from from-space to to-space.

4. We then continue allocating in to-space until it fills
up, and a new GC starts.

520—Spring 2005—40 [2]

Copying CoIIection.: .

An important side-effect of copying collection is that we
get automatic compaction — after a collection to-space
consists of the live objects in a contiguous piece of
memory, followed by the free space.

This sounds really easy, but - - -

» We have to traverse the object graph (just like in
mark and sweep), and so we need to decide the
order in which this should be done, depth-first or
breadth-first.

s DFS requires a stack (but we can, of course, use
pointer reversal just as with mark and sweep), and
BFS a queue. We will see later that encoding a
gueue is very simple, and hence most
implementations of copying collection make use of

 ChrirA onﬁE§' 1

Copying CoIIection.: .

This sounds really easy, but - - -

» An object in from-space will generally have several
objects pointing to it. So, when an object is moved
from from-space to to-space we have to make sure
that we change the pointers to point to the new copy.

Y9N Chrrine O2NNE AN r1

Copyi ng Col‘leption‘.: .

® Mark-and-sweep touches the entire heap, even if most of it is
garbage. Copying collection only touches live cells.

® Copying collection divides the heap in two parts: from-space and
to-space.

® to-space is automatically compacted.
® How to traverse object graph: BFS or DFS?

® How to update pointers to moved objects?
Algorithm:

1. Start allocating in from-space.
2. When from-space is full, copy live objects to to-space.

3. Now allocate in to-space.

—Spring 2005—40 [5]

Copyi ng Col‘leption‘.: .

Traversing the Object Graph:
Most implementations use BFS.

#® Use the to-space as the queue.

Updating (Forwarding) Pointers:

#® When an object is moved its new address is stored first
in the old copy.

Example:
from-space to-space from-space to-space
? %D oC PLSE RSN
Q*R v
/
roots: [] roots: T

520—Spring 2005—40

Copying Collection Algowrithm\

1. scan : = next := ADDR(to-space)
#® ([scan---next| hold the BFS queue.

® Objects above scan point into t 0- space. Objects between scan
and next point into from-space.

2. Copy objects pointed to by the root pointers to t o- space.
3. Update the root pointers to point to t o- space.
4. Put each object’'s new address fi rst in the original.

5. Repeat (recursively) with all the pointers in the new t o- space.
(a) Update scan to point past the last processed node.
(b) Update next to pointe past the last copied node.

Continue while scan < next.

 Chrnrirnme ONNE AN -1

Copying Collection Examg! e.. .(A) ‘f

from-space from-space
roots roots to-space

Y9N Chrrine O2NNE AN rol

Copying Collection Example... (B) Readingsand References

=

=

#® Read Scott, pp. 395-401.

—Spring 2005—40 9] 520—Spring 2005—40 [10]

	Copying Collection
	Copying Collectionldots
	Copying Collectionldots
	Copying Collectionldots
	Copying Collectionldots
	Copying Collection Algorithm
	Copying Collection Exampleldots (A)
	Copying Collection Exampleldots (B)
	Readings and References

