
520—Spring 2005—40

CSc 520

Principles of Programming
Languages

40: Garbage Collection — Copying Collection

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—40

Copying Collection

Even if most of the heapspace is garbage, a mark and
sweep algorithm will touch the entire heap. In such
cases it would be better if the algorithm only touched
the live objects.

Copying collection is such an algorithm. The basic idea
is:
1. The heap is divided into two spaces, the from-space

and the to-space.
2. We start out by allocating objects in the from-space.
3. When from-space is full, all live objects are copied

from from-space to to-space.
4. We then continue allocating in to-space until it fills

up, and a new GC starts.

[2]

520—Spring 2005—40

Copying Collection. . .

An important side-effect of copying collection is that we
get automatic compaction – after a collection to-space
consists of the live objects in a contiguous piece of
memory, followed by the free space.

This sounds really easy, but · · ·:
We have to traverse the object graph (just like in
mark and sweep), and so we need to decide the
order in which this should be done, depth-first or
breadth-first.
DFS requires a stack (but we can, of course, use
pointer reversal just as with mark and sweep), and
BFS a queue. We will see later that encoding a
queue is very simple, and hence most
implementations of copying collection make use of
BFS.

[3] 520—Spring 2005—40

Copying Collection. . .

This sounds really easy, but · · ·
An object in from-space will generally have several
objects pointing to it. So, when an object is moved
from from-space to to-space we have to make sure
that we change the pointers to point to the new copy.

[4]



520—Spring 2005—40

Copying Collection. . .

Mark-and-sweep touches the entire heap, even if most of it is
garbage. Copying collection only touches live cells.

Copying collection divides the heap in two parts: from-space and
to-space.

to-space is automatically compacted.

How to traverse object graph: BFS or DFS?

How to update pointers to moved objects?

Algorithm:

1. Start allocating in from-space.

2. When from-space is full, copy live objects to to-space.

3. Now allocate in to-space.

[5] 520—Spring 2005—40

Copying Collection. . .

Traversing the Object Graph:
Most implementations use BFS.

Use the to-space as the queue.

Updating (Forwarding) Pointers:

When an object is moved its new address is stored first
in the old copy.

Example:

roots:

from−space to−space

roots:

from−space to−space

GC

[6]

520—Spring 2005—40

Copying Collection Algorithm

1. scan := next := ADDR(to-space)

[scan · · · next] hold the BFS queue.

Objects above scan point into to-space. Objects between scan

and next point into from-space.

2. Copy objects pointed to by the root pointers to to-space.

3. Update the root pointers to point to to-space.

4. Put each object’s new address first in the original.

5. Repeat (recursively) with all the pointers in the new to-space.

(a) Update scan to point past the last processed node.

(b) Update next to pointe past the last copied node.

Continue while scan < next.

[7] 520—Spring 2005—40

Copying Collection Example. . . (A)

rootsroots
A

C

D

E

F

from−space

B

from−space
to−space

A

B

C

D

E

F

D

B

next

scan

[8]



520—Spring 2005—40

Copying Collection Example. . . (B)

roots to−space

D

B

next

scan

from−space

A

B

C

D

E

F

roots to−space

D

B

scan

next

E

from−space

A

B

C

D

E

F

[9] 520—Spring 2005—40

Readings and References

Read Scott, pp. 395–401.

[10]


	Copying Collection
	Copying Collectionldots 
	Copying Collectionldots 
	Copying Collectionldots 
	Copying Collectionldots 
	Copying Collection Algorithm
	Copying Collection Exampleldots (A)
	Copying Collection Exampleldots (B)
	Readings and References

