Generational Collection

CSC 520 » Works best for functional and logic languages (LISP,
Prolog, ML, ...) because
. . - 1. they rarely modify allocated cells
Princi pIeS Of Programmlng 2. newly created objects only point to older objects
Languages ((CONS A B) creates a new two-pointer cell with

] : . pointers to old objects),
41 Garbage Collection — Generational 3. new cells are shorter lived than older cells, and old

Collection objects are unlikely to die anytime soon.

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science

University of Arizona

—Spring 2005—41 Conyright © 200§ gstan Collberg 520—Spring 2005—41 2]
Generational Collection. .. Generational Collection. ..

» Generational Collection therefore Functional Language:

1. divides the heap into generations, G is the (cons "a ' (b c))

youngest, G, the oldest. &

2. allocates new objects in Gy. t1: X < new ' (b c);:

3. GC’s only newer generations. t2i Yy < new’a
#® We have to keep track of back pointers (from old tst return new cons(x, y)

generations to new). ® A new object (created at time t3) points to older objects.
Object Oriented Language:

ti: T < new Tabl e(0);
ta: X «— new I nteger(5);
ts: T.insert(x);

® A new object (created at time ¢5) is inserted into an older object, which
then points to the news object.

Y9N ChrrinA O2NNE A1 r1

C Chrhrinme ONNE A1 2l

Gene_rational Collecti_o\n. .

Renenbered Set: Root s: L ‘ ‘

G1

e
1 HIE

—Spring 2005—41 [5]

Generational Collection — After GC(G))

Renenbered Set: Root s: L ‘ ‘

Go

.

e
—.
S 1

520—Spring 2005—41 [6]

Gene_rational Collecti_o\n. .

Since old objects (in G,, - - - G1) are rarely changed (to
point to new objects) they are unlikely to point into Gy.

» Apply the GC only to the youngest generation (Gy),
since it is most likely to contain a lot of garbage.

°

Use the stack and globals as roots.

There might be some back pointers, pointing from an
older generation into Gy. Maintain a special set of such
pointers, and use them as roots.

°

Occasionally GC older (G - - - G) generations.

Use either mark-and-sweep or copying collection to GC
Go.

C Chrhrinme ONNE A1 -1

Remembering Back Pointers

Y9N ChrrinA O2NNE A1 rol

Remembering Back Pointers

Remembered List

After each pointer update x. f : = --., the compiler adds
code to insert x in a list of updated memory locations:
xt.f = ...
4
Xxt.f 1= ..

i nsert (Updat edLi st, Xx);

—Spring 2005—41 [9]

Remembering Back Pointers

Remembered Set

As above, but set a bit in the updated object so that it is
inserted only once in the list:

x71.f

< Il

x71.f
I F NOT x7.inserted THEN
i nsert (Updat edLi st, x);
X.Tinserted := TRUE
ENDI F

520—Spring 2005—41 [10]

Remembering Back Pointers. ..

Card marking
Divide the heap into “cards” of size 2*.

Keep an array di rty of bits, indexed by card number.

After a pointer update x1. f : = .. setthe dirty bit for
card c that x is on:

xT. f

)
Xt.f 1= ..
dirty[x div 2¥] := TRUE

C Chrhrinme ONNE A1 rM11

Remembering Back Pointers. ..

Page marking |
Similar to Card marking, but let the cards be virtual
memory pages.

#® When x is updated the VM system automatically sets
the di r t y bit of the page that x is on.

» We don’t have to insert any extra code!

Y9N ChrrinA O2NNE A1 Mo

Remembering Back Pointers. .. Readings and References

Page marking I # Read Scott, pp. 395-401.
The OS may not let us read the VM system’s dirty bits.

Instead, we write-protect the page x is on.

Onanupdate x7.f : = ... aprotection fault is
generated. We catch this fault and set a dirty bit
manually.

| I)

» We don'’t have to insert any extra code!

—Spring 2005—41 [13] 520—Spring 2005—41 [14]

	Generational Collection
	Generational Collectionldots
	Generational Collectionldots
	Generational Collectionldots
	Generational Collection -- After GC(G_0)
	Generational Collectionldots
	Remembering Back Pointers
	Remembering Back Pointers
	Remembering Back Pointers
	Remembering Back Pointersldots
	Remembering Back Pointersldots
	Remembering Back Pointersldots
	Readings and References

