
520—Spring 2005—42

CSc 520

Principles of Programming
Languages

42: Garbage Collection — Uncooperative
Languages

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg[1] 520—Spring 2005—42

Uncooperative Languages

There is some information which is necessary in order to
perform automatic memory management:

1. We need to find the roots of the object graph, i.e. the
pointers from the stack, registers, or global variables
which point to objects on the heap.

2. We need to know the size, the beginning, and end of
each object.

3. For each object we need to find which of its fields are
pointers.

Unfortunately, some languages have been designed so
that it is impossible to determine this information.

C and C++ are the two most popular such languages.

[2]

520—Spring 2005—42

Uncooperative Languages. . .

C and C++ don’t separate safe and unsafe features
(such as address and bit manipulation) which are
sometimes needed in systems programming.

Modula-3 has similar unsafe features as C and C++ but
they can be encapsulated into unsafe modules, which
don’t mess up the safety of the main (safe) part of the
program.

[3] 520—Spring 2005—42

Uncooperative Languages. . .

Most GC algorithms assume that there is always a
pointer to the beginning of every object. Depending on
the code generator, that may or may not be true.
f(g,s) char (*g)(); char * s;
{ int i; int l = strlen(s);

for (i = 0; i < l; i++)
s[i] = (*g)(s[i]); }

There may be no pointer to s[0].

[4]

520—Spring 2005—42

Uncooperative Languages. . .

We need to know

1. the roots of the object graph.

2. the size, the beginning, and end of each object.

3. which object fields are pointers.

Finding Roots:
Foo* f = new foo; // f = 0x53f36
f = NULL; // f* is garbage
int i = 0x53f36; // points to f...

[5] 520—Spring 2005—42

Uncooperative Languages. . .

Finding the beginning:
char* str = new char[26];
strcpy(str, "This is a string");
str += 10; // Only ptr to str...

Finding pointers:
union Unsure {char* str; int i} x;

[6]

520—Spring 2005—42

Conservative Garbage Collection

[7] 520—Spring 2005—42

Conservative GC

Works OK for uncooperative languages (C, C++) where
we can’t distinguish between pointers and integers.
Sometimes fails to reclaim all garbage.

Main Ideas:

Allocate memory in chunks. Each chunk holds a
collection of objects of a certain size (i.e. it’s easy to
find the start of objects).

Chunks are numbered. A pointer consists of 12 bits of
chunk number (C) + 20 bits of offset within the chunk
(O).

[8]

520—Spring 2005—42

Conservative GC. . .

To check whether a value V = (C, O) is a pointer to
some object we check that
1. Heap-bottom ≤ V ≤ Heap-top,
2. FirstChunk# ≤ C ≤ LastChunk#
3. the offset O is a multiple of the object size in chunk

C.

[9] 520—Spring 2005—42

Conservative GC. . .

Chunk

List:

1 2 3 4 5 6 7

size
= 8

mark
bits

Objects

Chunk 1:

.

. 8 bytes
each

V:

Chunk number Offset within chunk

(12 bits) (20 bits)

000000000111 00000000000000011110

Objects

Chunk 7: size mark
bits= 32

4K bytes

32 bytes each

[10]

520—Spring 2005—42

Readings and References

Read Scott, pp. 395–401.

[11]

	Uncooperative Languages
	Uncooperative Languagesldots
	Uncooperative Languagesldots
	Uncooperative Languagesldots
	Uncooperative Languagesldots
	Conservative Garbage Collection
	Conservative GC
	Conservative GCldots
	Conservative GCldots
	Readings and References

