
520—Spring 2005—43

CSc 520

Principles of Programming
Languages

43: Garbage Collection — Discussion

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—43

Unobrusive Garbage Collection

[2]

520—Spring 2005—43

Unobrusive Garbage Collection

GC Requirements:
batch programs: We want short total GC time.

interactive programs: We want unnoticable GCs.

Unobtrusive GC:

Incremental Collection

Do a little GC-work every time an object is allocated,
or a pointer is changed.

Concurrent Collection

Run the collector and the program in different
processes, or on different processors.

[3] 520—Spring 2005—43

Incremental GC

Use copying collection, but rather than stop when you
run out of memory and then do all the GC work in one
shot, do a little bit whenever a pointer variable is
referenced or when a new object is allocated.

We start out by forwarding (copying) the objects pointed
to by global variables.

Then, instead of continuing forwarding recursively, we
resume the program.

Every time a pointer is referenced we check to see
whether it is pointing into from-space. If it is, we
forward that object too.

[4]



520—Spring 2005—43

Incremental GC. . .

Even objects which are not explicitly referenced have to
be checked, to see if they have become garbage.
Therefore, every time we allocate a new object we
forward k pointers.
A good value for k has to be determined by
experimentation.

Eventually scan will catch up with next and we switch
from-space and to-space and start an new cycle.

Baker’s algorithm (on the next slide) is a variant of
copying collection.

[5] 520—Spring 2005—43

Incremental GC. . .

1. Copy and update objects pointed to by global pointers
to to-space.

2. Resume program.
3. When an object in from-space is referenced, first copy

it to to-space.
p := x ↑.next;

⇓ (implemented as)
IF x ∈ from− space THEN

copy x to to-space;
update x, scan, and next;
x := x’s new address in to-space;

END;
p := x ↑.next;

4. Every time NEW is called, k pointers are forwarded.
[6]

520—Spring 2005—43

Cost of Garbage Collection

[7] 520—Spring 2005—43

Cost of Garbage Collection

The size of the heap is H, the amount of reachable
memory is R, the amount of memory reclaimed is
H − R.

What is the cost of the different GC algorithms?

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H − R

[8]



520—Spring 2005—43

Cost of GC — Mark-and-Sweep

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

The mark phase touches all live nodes. Hence, it takes
time c1H, for some constant c1. c1 ≈ 10?

The sweep phase touches the whole heap. Hence, it
takes time c2R, for some constant c2. c2 ≈ 3?

GC cost =
c1R + c2H

H − R
≈

10R + 3H

H − R

[9] 520—Spring 2005—43

Cost of GC — Mark-and-Sweep. . .

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

GC cost =
c1R + c2H

H − R
≈

10R + 3H

H − R

If H ≈ R we reclaim very litte, and the cost of GC goes
up. In this case the GC should grow the heap (increase
H).

[10]

520—Spring 2005—43

Cost of GC — Copying Collection

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

The breadth first search phase touches all live nodes.
Hence, it takes time c3R, for some constant c3. c3 ≈ 10?

The heap is divided into a from-space and a to-space,
so each collection reclaims H

2
− R words.

GC cost =
c3R

H

2
− R

≈
10R

H

2
− R

[11] 520—Spring 2005—43

Cost of GC — Copying Collection. . .

GC cost =
c3R

H

2
− R

≈
10R

H

2
− R

If there are few live objects (H � R) the GC cost is low.

If H = 4R, we get

GC cost =
c3R

4R

2
− R

≈ 10.

This is expensive: 4 times as much memory as
reachable data, 10 instruction GC cost per object
allocated.

[12]



520—Spring 2005—43

Cost of GC — Generational Collection

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

Assume the youngest generation (G0) has 10% live
data, i.e. H = 10R.

Assume we’re using copying collection for G0.

GC costG0
=

c3R
H

2
− R

=
c3R

10R

2
− R

≈
10R

4R
= 2.5

[13] 520—Spring 2005—43

Cost of GC — Generational Collection. . .

H
e
a
p

Reachable=R Reclaimed=H − R

Heapsize=H

GC costG0
=

c3R
H

2
− R

=
c3R

10R

2
− R

≈
10R

4R
= 2.5

If R ≈ 100 kilobytes in G0, then H ≈ 1 megabyte.

In other words, we’ve wasted about 900 kilobytes, to get
2.5 instruction/word GC cost (for G0).

[14]

520—Spring 2005—43

Exam Problem

1. Why is generational collection more appropriate for
functional and logic languages (such as LISP and
Prolog), than for object-oriented languages (such as
Eiffel and Modula-3)?

2. The heap in the figure on the next slide holds 7 objects.
All objects have one integer field and one or two pointer
fields (black dots). The only roots are the three global
variables X, Y, and Z. Free space is shaded. Show the
state of To-Space after a copying garbage collection
has been performed on From-Space. Note that several
answers are possible, depending on the visit strategy
(Depth-First or Breadth-First Search) you chose.

[15] 520—Spring 2005—43

Exam Problem I. . .

YX Z

Roots:

Space

From−
5 7 1310 1286

[16]



520—Spring 2005—43

Exam Problem. . .

1. Name five garbage collection algorithms!

2. Describe the Deutsch-Schorr-Waite algorithm! When is
it used? Why is it used? How does it work?

3. What are the differences between stop-and-copy,
incremental and concurrent garbage collection? When
would we prefer one over the other?

[17] 520—Spring 2005—43

Readings and References

Read Scott, pp. 395–401.

Apple’s Tiger book, pp. 257–282

Topics in advanced language implementation, Chapter
4, Andrew Appel, Garbage Collection. Chapter 5, David
L. Detlefs, Concurrent Garbage Collection for C++.
ISBN 0-262-12151-4.

Aho, Hopcroft, Ullman. Data Structures and Algorithms,
Chapter 12, Memory Management.

[18]

520—Spring 2005—43

Readings and References. . .

Nandakumar Sankaran, A Bibliography on Garbage
Collection and Related Topics, ACM SIGPLAN Notices,
Volume 29, No. 9, Sep 1994.

J. Cohen. Garbage Collection of Linked Data
Structures, Computing Surveys, Vol. 13, No. 3, pp.
677–678.

[19]


	Unobrusive Garbage Collection
	Unobrusive Garbage Collection
	Incremental GC
	Incremental GCldots 
	Incremental GCldots 
	Cost of Garbage Collection
	Cost of Garbage Collection
	Cost of GC --- Mark-and-Sweep
	Cost of GC --- Mark-and-Sweepldots 
	Cost of GC --- Copying Collection
	Cost of GC --- Copying Collectionldots 
	Cost of GC --- Generational Collection
	Cost of GC --- Generational Collectionldots 
	Exam Problem
	Exam Problem Ildots 
	Exam Problemldots 
	Readings and References
	Readings and Referencesldots 

