
520—Spring 2005—49

CSc 520

Principles of Programming
Languages
49: Modularity

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—49

Separate Compilation

[2]

520—Spring 2005—49

Separate Compilation

From the very beginning of language design history, it
was realized that monolithic languages (the entire
program is stored in one file and compiled all at once)
were no good.

Monlithic languages made compilation slow and made it
difficult for several programmers to work on the same
problem.

As early as 1958, FORTRAN II had separately compiled
procedures!

Eventually it was realized that a more formal approach
had to be taken to the definition of separately compiled
modules. A number of languages (Mesa, Modula-2,
Ada, . . .) constructed module systems built on the
ideas of David Parnas:

[3] 520—Spring 2005—49

Separate Compilation. . .

The specification must provide

1. to the intended user all the information that he will need
to use the program, and nothing more.

2. to the implementer all the information about the
intended use that he needs to complete the program,
and no additional information.

[4]

520—Spring 2005—49

Separate Compilation. . .

Each module has two parts, the specification and the
implementation. Much like .h and .c files in C, only
each part is separately compiled.

IMPORT PartDiffEqn;

SPEC TelescopicLens; SPEC SolarPanel;

MODULE Hubble;

IMPORT TelescopicLens;

IMPORT SolarPanel;

[5] 520—Spring 2005—49

Module Concepts

In one-to-one languages, there is one specification unit
for every implementation unit. In many-to-many
languages, each module can consist of several
implementation and several specification units.

#specs #impls language
one -to- zero Eiffel
one -to- one Modula-2, Ada

many -to- many Modula-3, Mesa

[6]

520—Spring 2005—49

Module Concepts. . .

The specification unit of a module contains the
declarations of the types, constants, exceptions,
procedures, etc, that the module exports.

The implementation unit contains the implementation
(procedure bodies, e.g.) of these objects.

[7] 520—Spring 2005—49

Separate Compilation — Problems

How do we perform inter-module type checking? E.g.,
we must make sure that imported procedures are called
with the right types of arguments.

How are compiled modules joined together to form an
executable program?

How can we make sure that specification and
implementation units are compiled in the correct order?

How can we implement Parnas’ information hiding; i.e.
how can we make sure that only the neccessary
information is given in the specification unit, and the
rest deferred to the implementation unit?

[8]

520—Spring 2005—49

Separate Compilation. . .

Let’s assume that a module M’s specification part is kept
in a file called M.def, and that the implementation part
is in M.mod.

Usually, M.def is compiled into a file M.sym, which
contains a compiled version of M.def’s symbol table.

M.mod is compiled into a .o object file.

Assume that M imports module N. When M.mod is
compiled, the compiler needs access to N’s symbol
table, in order to be able to type-check M. The compiler
therefore reads N.sym.

If M imports N and N imports R, then M may (indirectly)
be able to refer to R’s objects. Hence, when M is
compiled, we need access to R’s object.

[9] 520—Spring 2005—49

Separate Compilation. . .

C
O
M
P
I
L
E
R

Impl

Units

Spec

Units

E
D
I
T
O
R

L
I
N
K

Compiled

Specs

Compiled

Code

Executable

Program
L
O
A
D
E
R

D
Y
N

L
I
N
K

[10]

520—Spring 2005—49

Separate Compilation. . .

IMPORT N,R

IMPORT N

M.def

M.mod

M.sym

M.o

IMPORT R

IMPORT R

N.mod

N.def N.sym

N.o

R.def

R.mod

R.sym

R.o

[11] 520—Spring 2005—49

Separate Compilation. . .

IMPORT N,R

M.mod

compiler

M.o

N.sym

R.sym

R.sym

compiler

N.sym

R.sym

R.sym

N.sym

M.symM.def

IMPORT N

[12]

520—Spring 2005—49

Separate Compilation. . .

Time-stamps
If, in the slide before last, R.def was edited, R.def will
(naturally) have to be recompiled. Furthermore, N.def
will have to be recompiled since it makes use of
symbols from R.def, and now that R.def has changed
we need to type-check N.def again. For the same
reason, M.def must also be recompiled.

How does the compiler detect these dependencies?
Each compiled specification unit M.sym, contains (in
addition to the compiled symbol table) a time-stamp,
the time when the module was compiled. It also holds
time-stamps for all imported modules. This is enough to
detect compilation order violations.

[13] 520—Spring 2005—49

Encoding the Symbol Table

Each specification unit is compiled into a symbol file, an
encoding of the symbol table of exported symbols.

We can encode the symbol table as a sequence of
tuples. Each tuple defines an identifier. It stores the
module which defines the name; the kind
(const,proc,type,etc), name, and type of the identifier;
and extra information.

nr kind mod name type extra

(1) module M · · ·

(2) const (1) C (3) val=45

(3) const (0) int basic

(4) · · · · · · · · · · · · · · ·

[14]

520—Spring 2005—49

Example

DEFINITION MODULE M;
IMPORT N;
TYPE T = RECORD a : INTEGER; b : N.T; END;

END M.

DEFINITION MODULE N;
IMPORT R;
TYPE T = ARRAY [1..R.C] OF R.T;

END N.

DEFINITION MODULE R;
TYPE T = CHAR;
CONST C = 45;

END R.

[15] 520—Spring 2005—49

Example — M.sym

nr kind mod name type extra

(1) module M TS="10-06 23:11"

(2) import N TS="10-05 09:24"

(3) import R TS="10-06 14:46"

(4) type std CHAR

(5) type std INT

(6) type equiv (3) T (4)

[16]

520—Spring 2005—49

Example — M.sym. . .

nr kind mod name type extra

(7) const (3) C (5) val=45

(8) type range (2) T$1 (5) range=[1, (7)]

(9) type array (2) T (6) range=(8)

(10) type rec (1) T

(11) field (1) a (5) record=(10)

(12) field (1) b (9) record=(10)

[17] 520—Spring 2005—49

Information Hiding

[18]

520—Spring 2005—49

Information Hiding

Let’s look at how three languages (Mesa, Ada,
Modula-2) have implemented Parnas’ principles of
information hiding.

In all three languages modules come in two parts; i.e.
they have one-to-one module systems.

All three languages allow you to export types,
procedures, and constants. In the specification part of
the module you give procedure headers, constants
declarations, and the names of opaque (hidden) types.

Procedure bodies (and, for some of the languages,
implementations of hidden types) are given in the
implementation unit.

[19] 520—Spring 2005—49

Modular Languages — Mesa

Mesa was the first “real” modular language, developed
at Xerox Parc in the early 70’s.

In Mesa the specification module’s definition of the
stack type (T), contains the size (in bytes) of the type.

Like Modula-2, Mesa does not support garbage
collection. But, in this case, the type T is statically
allocated, so no dynamic allocation is necessary.

“[202]” in the definition of T refers to T ’s size.

“Stack.Init [@S]” passes the address of S to Init. This
construction must be used since Mesa only has
pass-by-value parameters.

[20]

520—Spring 2005—49

Modular Languages — Mesa. . .

Stack: DEFINITIONS =
BEGIN

T : TYPE [202];
PT : TYPE = LONG POINTER TO T;

Init : PROC [S : PT];

Push : PROC [S : PT; E : INTEGER];

Pop : PROC [S : PT] RETURNS INTEGER;
END.

[21] 520—Spring 2005—49

Modular Languages — Mesa. . .

StackImpl: PROGRAM EXPORTS Stack = BEGIN
T : PUBLIC TYPE = RECORD [

space : ARRAY [1..100] OF INTEGER;
index : [0 .. 100]

];
(* Impl of Init, Push, and Pop. *)
END.

Main: PROGRAM IMPORTS Stack =
BEGIN

S : Stack.T;
Stack.Init [@S];
Stack.Push [@S, 314];

END.

[22]

520—Spring 2005—49

Modular Languages — Ada

generic

type ITEM is private;

package GENERIC STACK is

type STACK (SIZE : POSITIVE) is limited private;

procedure PUSH (S : in out STACK; E : in ITEM);

procedure POP (S : in out STACK; E : out ITEM);

pragma INLINE (PUSH, POP);

private

type VECTOR is array (POSITIVE range < >) of ITEM;

type STACK (SIZE : POSITIVE) is record

SPACE : VECTOR (1 .. SIZE); INDEX : NATURAL := 0;

end record;

end GENERIC STACK;

[23] 520—Spring 2005—49

Modular Languages — Ada. . .

package body GENERIC STACK is
-- Implementations of ...
-- PUSH and POP ...

end GENERIC STACK;

with GENERIC STACK;
procedure MAIN is

package STACK INT is new GENERIC STACK (INTEGER);

S : STACK INT.STACK (100);
begin

STACK INT.PUSH (S, 314);
end MAIN;

[24]

520—Spring 2005—49

Modular Languages — Modula-2

DEFINITION MODULE GenStack;
IMPORT SYSTEM;

TYPE Stack;

PROCEDURE Create () : Stack;
PROCEDURE Destroy (VAR S : Stack);

PROCEDURE Push (S : Stack; E : SYSTEM.ADDRESS);
PROCEDURE Pop (S : Stack; VAR E:SYSTEM.ADDRESS);

END GenStack.

[25] 520—Spring 2005—49

Modular Languages — Modula-2. . .

IMPLEMENTATION MODULE GenStack;

IMPORT SYSTEM, Storage;

TYPE Stack = POINTER TO RECORD

space : ARRAY [1..100] OF SYSTEM.ADDRESS;

index : CARDINAL;

END;

(* Implementations of Create,... *)

END GenStack.

[26]

520—Spring 2005—49

Modular Languages — Modula-2. . .

MODULE Main;
IMPORT GenStack, Storage;
VAR S : GenStack.Stack;
E : POINTER TO INTEGER;

BEGIN
S := GenStack.Create ();
NEW (E); Eˆ := 314;
GenStack.Push (S, E);
GenStack.Destroy (S);

END Main.

[27] 520—Spring 2005—49

Language Comparisons

Notice the difference between an Ada package and a
Modula-2 module:

Ada

An Ada module specification has two parts, a public
part and a private part.

The private part contains the definitions of all those
items that we don’t want a user to know about. In the
stack example, the private part reveals that the stack is
implemented as an array.

[28]

520—Spring 2005—49

Language Comparisons. . .

Modula-2
The implementation of the stack type is not given in the
specification part of the module. Rather, the information
that the stack uses an array implementation is hidden
within the module’s implementation unit, which is
available only to the module’s implementer.

Note that the Stack type is implemented as a pointer.
This is in contrast to the Ada implementation which
used a static representation.

Note that – since Modula-2 does not support garbage
collection – we need explicit procedures for memory
allocation and deallocation.

[29] 520—Spring 2005—49

Information Hiding – How?

A separately compiled modular program goes through
several processing stages from source code to binary
executable program:

Compilation Check the static semantic correctness of and
generate code for each module.

Binding Combine the code generated for each module into
one program. Resolve inter-modular references.

Loading Load the program generated during binding into the
memory of the computer. If we have dynamic linking,
then the relevant dynamic libraries must also be loaded.

Execution Execute any start-up code. Run the loaded
program.

[30]

520—Spring 2005—49

Information Hiding – How?. . .

Specification units are often compiled as well, to an
intermediate form containing all the information of the
symbols the module makes available.

This information is then loaded by the compiler when it
compiles a client module, i.e. a module which makes
use of the exported symbols.

The thing to remember from previous slides is that the
only information available to the compiler regarding
imported modules, is what is given in the specification
unit.

We now have all the clues we need in order to
understand why the languages we looked at earlier
have such (seemingly arbitrary) rules regarding
exported types:

[31] 520—Spring 2005—49

Information Hiding – How?. . .

When compiling a module the compiler needs access to the sizes of all
imported types and the code of all imported procedures.

Therefore, (since the compiler only has access to the information in the
interface) this information needs to be given there.

Different languages reveal the information in different ways:

Ada, C++ Reveal stack type.

Modula-2 Requires that the stack types is a pointer. Since all pointers are the
same size this will allow the compiler to know the size.

Mesa Reveal stack size.

Language design is influenced by compiler requirements!

[32]

520—Spring 2005—49

Binding Time

In some systems the systems linker is replaced by a
module binder which allows information (such as sizes
of types) to be exchanged at binding time.

Some of the work traditionally performed by the
compiler is deferred till module binding time. This
means that certain operations (such as inline
expansion, optimization, and code generation) is done
by the compiler (when there is enough information
available for it to do so) or otherwise performed by the
binder.

In order to be able to perform these types of operations,
the code produced by the compiler is sometimes
intermediate code rather than machine code, as is
usual.

[33] 520—Spring 2005—49

Exchanging Information at Binding Time

C

O

M

P

I

L

E

R

Source

Modules Program

Executable

P

A

S

T

E

R

L I N K
E D I T O R

Compiled

Code

Object Code?

Interm. Code?

[34]

520—Spring 2005—49

Readings and References

Read Scott: 122–129,539–542

Christian Collberg, Flexible Encapsulation, PhD Thesis,
Lund University.

Mary Fernandez, Simple and Effective Link-Time
Optimization of Modula-3 Programs, PLDI’95.

Mary Fernandez, A Retargetable, Optimizing Linker,
PhD Thesis, Princeton University.

[35] 520—Spring 2005—49

Summary

There is an increasing amount of research into link-time
optimization. This is challenging work since linked
programs are large, maybe 10 M lines of code.

[36]

	Separate Compilation
	Separate Compilation
	Separate Compilationldots
	Separate Compilationldots
	Module Concepts
	Module Conceptsldots
	Separate Compilation --- Problems
	Separate Compilationldots
	Separate Compilationldots
	Separate Compilationldots
	Separate Compilationldots
	Separate Compilationldots
	Encoding the Symbol Table
	Example
	Example --- M.sym
	Example --- M.symldots
	Information Hiding
	Information Hiding
	Modular Languages --- Mesa
	Modular Languages --- Mesaldots
	Modular Languages --- Mesaldots
	Modular Languages --- Ada
	Modular Languages --- Adaldots
	Modular Languages --- Modula-2
	Modular Languages --- Modula-2ldots
	Modular Languages --- Modula-2ldots
	Language Comparisons
	Language Comparisonsldots
	Information Hiding -- How?
	Information Hiding -- How?ldots
	Information Hiding -- How?ldots
	Binding Time
	Exchanging Information at Binding Time
	Readings and References
	Summary

