
520—Spring 2005—50

CSc 520

Principles of Programming
Languages

50: Semantics — Introduction

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—50

Formal Semantics

In order for
1. compiler writers to know exactly how to implement a

language, and
2. language users to know exactly what (combinations

of) language constructs mean,

the meaning of a language needs to be defined.

Most definitions of real languages are in a stylized, but
informal, English.

It is also possible to give formal semantic language
definitions.

[2]

520—Spring 2005—50

Formal Semantics. . .

In practice, most languages are not defined in a formal,
precise, mathematical way.

There have been some attempts, for example
Modula-2, Algol 68, and PL/I.

“Simple” languages such as Scheme and Haskell are
comparatively easy to define formally, compared to C,
C++, Java, etc.

[3] 520—Spring 2005—50

Formal Semantics — Modula-2

The Modula-2 specification was written in VDM-SL
(Vienna Development Method - Specification
Language), a formalism for giving a precise definition of
a programming language in a denotational style.

It was over 500 pages long, and didn’t include
specifications of the standard libraries.

Wirth’s original Modula-2 report was 28 pages.

For a history of this disastrous standardization effort,
see http://www.scifac.ru.ac.za/cspt/sc22wg13.htm.

Note also that Modula-2 is a very simple language
compared to Ada, C++, Java, etc.

[4]

http://www.scifac.ru.ac.za/cspt/sc22wg13.htm

520—Spring 2005—50

Formal Semantics — PL/I

VDL (Vienna Definition Language) was used to specify
PL/I.

A specification has two parts:
1. A translator that specified a translation into an

abstract syntax tree,
2. an interpreter of the abstract syntax tree.

VDL is a kind of operational semantics .

PL/I is large and complex.

The resulting (large) document was called the
Vienna Telephone Directory . It was impossible to
comprehend.

[5] 520—Spring 2005—50

Methods

In this class we will consider two methods for defining the
semantics of programming languages:

Operational semantics define a computation by giving
step-by-step transformations on a abstract machine that
simulate the execution of the program.

Denotational semantics constructs a mathematical
object (typically a function) which is the meaning of the
program.

[6]

520—Spring 2005—50

Contextual Constraints

A compiler performs syntactic and semantic analysis.
There really isn’t a sharp distinction between the two.

Is String x; · · ·; print x/2 a syntactic or
semantic error?

Some would say that it violates the
static semantic rules of the language, and hence is a
semantic (not a syntactic) error.

Others would say it violates context-sensitive syntax
rules of the language. I.e., they’d consider the program
as a whole to determine if it is well-formed or not.

We will use the term contextual constraints for those
rules that restricts the programs which are considered
well-formed.

[7] 520—Spring 2005—50

Operational Semantics

Operational Semantics specifies a language through
the steps by which each program is executed.

This is often done informally. For example, the
statement while E do C is specified as
1. Evaluate E to a truthvalue B;
2. If B = true then execute C, then repeat from 1).
3. If B = false, terminate.

The emphasis is on specifying the steps needed to
execute the program. This makes the specification
useful for language implementers.

[8]

520—Spring 2005—50

Operational Semantics. . .

We need two things:
1. an abstract syntax, and
2. an interpreter.

The abstract syntax defines the structure of each
construct in the language, for example, that an
if-statement consists of three parts: the test e, the
then-part c1 and the else-part c2:
if ::= e:bool expr c1:statement c2:statement

Note that no syntactic information is given.

The interpreter generates a sequence of machine
configurations that define the program’s semantics. The
interpreter is defined by rewriting rules.

[9] 520—Spring 2005—50

Operational Sem. — Peano Arithmetic

Abstract Syntax (N ∈ Nat, the Natural Numbers):

N ::= 0 | S(N) | (N + N) | (N × N)

Interpreter:

I : N → N

I [[(n + 0)]] ⇒ n

I [[(m + S(n))]] ⇒ S(I [[(m + n)]])

I [[(n × 0)]] ⇒ 0

I [[(m × S(n))]] ⇒ I [[((m × n) + m)]]

where m, n ∈ Nat

[10]

520—Spring 2005—50

Operational Sem. — Peano Arithmetic

The rewrite rules are used to turn an expression into
standard form, containing only S (succ) and 0.

S(S(S(S(0)))) = 4.

[11] 520—Spring 2005—50

Operational Sem. — Simple. . .

Simple is a language with if-statements,
while-statements, assignment-statements, and integer
arithmetic.

The semantic function I interprets commands.

The semantic function ν interprets expressions.

The store σ maps variables to their values.

Assignments update the store.

The result of the interpretation (the semantics of the
program) is the resulting store.

[12]

520—Spring 2005—50

Operational Sem. — Simple. . .

Interpreter:

I : C × Σ → Σ

ν : E × Σ → T ∪ Z

Semantic Equations:

I(skip, σ) = σ

I(V := E, σ) = σ[V 7→ ν(E, σ)]

I(C1 ; C2, σ) = E(C2, E(C1, σ))

I(if E then C1 else C2 end, σ) = I(C1, σ) if ν(E, σ) = true

I(C2, σ) if ν(E, σ) = false

[13] 520—Spring 2005—50

Operational Sem. — Simple. . .

Interpreter:

while E do C end =

if E then (C; while Edo C end) else skip

ν(V, σ) = σ[V]

ν(N, σ) = N

ν(E1 + E2, σ) = ν(E1, σ) + ν(E2, σ)

ν(E1 = E2, σ) = true if ν(E, σ) = ν(E, σ)

= false if ν(E, σ) 6= ν(E, σ)

[14]

520—Spring 2005—50

Denotational Semantics

We think of each program as implementing a
mathematical function.

An imperative program is a function from inputs to
outputs. This function is the meaning of the program.

Example

exec [[while E do C]] =
let exec-while env sto =

let Boolean tr = evaluate [[E]] env sto in
if tr then

exec-while env (exec [[C]] env sto)
else sto

in
exec-while

[15] 520—Spring 2005—50

Denotational Semantics. . .

We need three things:
1. an abstract syntax,
2. a semantic algebra defining a computational model,

and
3. valuation functions.

The valuation functions map the syntactic constructs of
the language to the semantic algebra.

Denotational semantics relies on defining an object in
terms of its constituent parts.

[16]

520—Spring 2005—50

Denotational Sem. — Peano Arithmetic

Abstract Syntax (N ∈ Nat, the Natural Numbers):

N ::= 0 | S(N) | (N + N) | (N × N)

Semantic Algebra:

+ : Nat → Nat → Nat

Valuation Function:

D : Nat → Nat

D [[(n + 0)]] = D [[n]]

D [[(m + S(n))]] = D [[(m + n)]] + 1

D [[(n × 0)]] = 0

D [[(m × S(n))]] = D [[((m × n) + m)]]

where m, n ∈ Nat
[17] 520—Spring 2005—50

Denotational Sem. — Simple

Abstract Syntax:

C ∈ Command

E ∈ Expression

O ∈ Operator

N ∈ Numeral

V ∈ Variable

C ::= V := E | if E then C1 else C2 end | while E do C end | C1

; C2 | skip

E ::= V | N | E1 O E2 | (E)
O ::= + | - | * | / | = | < | > | <>

[18]

520—Spring 2005—50

Denotational Sem. — Simple. . .

Semantic Algebra:

τ ∈ T = true, false; the boolean values
ζ ∈ Z = {... − 1, 0, 1, ...}; the integers
+ : Z → Z → Z

= : Z → Z → T

σ ∈ S = Variable → Numeral; the state

Valuation Functions:

C ∈ C → (S → S)

E ∈ E → E → (N ∪ T)

[19] 520—Spring 2005—50

Denotational Sem. — Simple. . .

C [[skip]] σ = σ

C [[V :=E]] σ = σ [[V 7→ E [[E]]]] σ

C [[C1; C2]] = C [[C2]] C [[C1]]

C [[if E then C1else C2 end]] σ = C [[C1]] σ if E [[E]] σ = true

= C [[C2]] σ if E [[E]] σ = false

C [[while E do C end]] σ =

lim
n→∞

C [[(if E then C else skip end)n]] σ

E [[V]] σ = σ(V)

E [[N]] = ζ

E [[E1 + E2]] = E [[E1]] σ + E [[E2]] σ

E [[E1 = E2]] σ = E [[E1]] σ = E [[E2]] σ

[20]

520—Spring 2005—50

Concrete Syntax of Wren

[21] 520—Spring 2005—50

Wren

Wren is a small imperative language that we will be
using as a running example.

The complete concrete syntax of Wren is given in the
next few slides.

[22]

520—Spring 2005—50

Concrete Syntax

program ::= program identifieris block

block ::= declaration seq begin command seq end

declaration seq ::= | declaration declaration seq

declaration ::= var variable list : type ;

type ::= integer | boolean

variable list ::= variable | variable , variable list

command seq ::= command | command ; command seq

command ::= variable := expr | skip
| read variable | write integer expr
| while boolean expr do command seq end while
| if boolean expr then command seq end if
| if boolean expr then command seq else command seq
end if

[23] 520—Spring 2005—50

Concrete Syntax. . .

expr ::= integer expr | boolean expr

integer expr ::= term | integer expr weak op term

term ::= element | term strong op element

element ::= numeral | variable | (integer expr) | element

boolean expr ::= boolean term | boolean expr or boolean term

boolean term ::= boolean element
| boolean term and boolean element

boolean element ::= true | false | variable | comparison
| not (boolean expr) | (boolean expr)

comparison ::= integer expr relation integer expr

[24]

520—Spring 2005—50

Concrete Syntax. . .

variable ::= identifier

identifier ::= letter | identifier letter | identifierdigit

relation ::= <= | < | = | > | >= | <>

weak op ::= + |

strong op ::= * | /

letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z

numeral ::= digit | digit numeral

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

[25] 520—Spring 2005—50

Wren — Example

program binary is

var n,p : integer;

begin

read n; p := 2;

while p<=n do

p := 2*p

end while;

p := p/2;

while p>0 do

if n>= p then

write 1; n := np

else

write 0

end if;

p := p/2

end while

end
[26]

520—Spring 2005—50

Readings and References

Read Chapter 1, in Syntax and Semantics of
Programming Languages, by Ken Slonneger and Barry
Kurtz, http://www.cs.uiowa.edu/˜slonnegr/plf/Book.

[27] 520—Spring 2005—50

Acknowledgments

Some examples are taken from Introduction to
Programming Languages, by Anthony A. Aaby,
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/semantic.htm.

The Wren lanuage is taken from the book Syntax and
Semantics of Programming Languages, by Ken
Slonneger and Barry Kurtz,
http://www.cs.uiowa.edu/˜slonnegr/plf/Book.

[28]

http://www.cs.uiowa.edu/~slonnegr/plf/Book
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/semantic.htm
http://www.cs.uiowa.edu/~slonnegr/plf/Book

	Formal Semantics
	Formal Semanticsldots
	Formal Semantics --- Modula-2
	Formal Semantics --- PL/I
	Methods
	Contextual Constraints
	Operational Semantics
	Operational Semanticsldots
	Operational Sem. --- Peano Arithmetic
	Operational Sem. --- Peano Arithmetic
	Operational Sem. --- Simpleldots
	Operational Sem. --- Simpleldots
	Operational Sem. --- Simpleldots
	Denotational Semantics
	Denotational Semanticsldots
	Denotational Sem. --- Peano Arithmetic
	Denotational Sem. --- Simple
	Denotational Sem. --- Simpleldots
	Denotational Sem. --- Simpleldots
	Concrete Syntax of Wren
	Wren
	Concrete Syntax
	Concrete Syntaxldots
	Concrete Syntaxldots
	Wren --- Example
	Readings and References
	Acknowledgments

