e ——— = =

CSc 520

Principles of Programming
Languages
50: Semantics — Introduction

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Spring 2005—50 [1]

Formal Semantics

In order for
1. compiler writers to know exactly how to implement a
language, and
2. language users to know exactly what (combinations
of) language constructs mean,

the meaning of a language needs to be defined.

#® Most definitions of real languages are in a stylized, but
informal, English.

Itis also possible to give formal semantic language
definitions.

520—Spring 2005—50 [2]

Formal Semantics. ..

|n practice, most languages are not defined in a formal,
precise, mathematical way.

There have been some attempts, for example
Modula-2, Algol 68, and PL/I.

#® “Simple” languages such as Scheme and Haskell are
comparatively easy to define formally, compared to C,
C++, Java, etc.

C Chrnrine ONNE N 2l

FormaISemaﬂtics — Mgglula—Z

#® The Modula-2 specification was written in VDM-SL
(Vienna Development Method - Specification
Language), a formalism for giving a precise definition of
a programming language in a denotational style.

» It was over 500 pages long, and didn’t include
specifications of the standard libraries.

Wirth's original Modula-2 report was 28 pages.

For a history of this disastrous standardization effort,
SEee http://www.scifac.ru.ac.za/cspt/sc22wgl3.htm.

e

Note also that Modula-2 is a very simple language
compared to Ada, C++, Java, etc.

Y9N Chrrine O2NNE N r1

http://www.scifac.ru.ac.za/cspt/sc22wg13.htm

Formal Semantics — PL/I Methods

» VDL (Vienna Definition Language) was used to specify In this class we will consider two methods for defining the
PL/I. semantics of programming languages:

A specification has two parts: # Operational semantics define a computation by giving
1. A translator that specified a translation into an step-by-step transformations on a abstract machine that

abstract syntax tree, simulate the execution of the program.

2. an interpreter of the abstract syntax tree. » Denotational semantics constructs a mathematical

» VDL is a kind of operational semantics . object (typically a function) which is the meaning of the

program.

PL/lis large and complex.

The resulting (large) document was called the
Vienna Telephone Directory. It was impossible to
comprehend.

—Spring 2005—50 (5] 520—Spring 2005—50 [6]

Contextual Constraints Operational Semantics

A compiler performs syntactic and semantic analysis. # Operational Semantics specifies a language through
There really isn’t a sharp distinction between the two. the steps by which each program is executed.

® IsString x; ---; print x/2asyntactic or # This is often done informally. For example, the
semantic error? statementwhi [e £ do C]is specified as

Some would say that it violates the 1. Evaluate F to a truthvalue B:;
static semantic rules of the language, and hence is a 2. If B = true then execute C, then repeat from 1).
semantic (not a syntactic) error. 3. If B = false. terminate.

» Others would say it violates context-sensitive syntax # The emphasis is on specifying the steps needed to
rules of the language. I.e., they’'d consider the program execute the program. This makes the specification
as a whole to determine if it is well-formed or not. useful for language implementers.

We will use the term contextual constraints for those
rules that restricts the programs which are considered
well-formed.

Operational Semantics. ..

#® We need two things:
1. an abstract syntax, and
2. an interpreter.

#® The abstract syntax defines the structure of each
construct in the language, for example, that an

if-statement consists of three parts: the test ¢, the
then-part ¢; and the else-part ¢;:

if .= elbool_expr c1:statement co:statement
Note that no syntactic information is given.
The interpreter generates a sequence of machine

configurations that define the program’s semantics. The
interpreter is defined by rewriting rules.

—Spring 2005—50 [9]

Operational Sem. — Peano Arithmetic

Abstract Syntax (IV € Nat, the Natural Numbers):
N = 0 [S(N) | (N+N) | (N x N)

Interpreter:
I:N — N
Ifn+0)] = n
[[(m+S0)] = SU[(m+n)])
If(nx0)] = 0
If(mx Sn)] = I[((mxn)+m)]

where m,n € Nat

520—Spring 2005—50 [10]

Jperational Sem. — Peano Arithmetic

The rewrite rules are used to turn an expression into
standard form, containing only S (succ) and 0.

® S(S(S(S(0)))) = 4.

C Chrnrine ONNE N rM11

Operational Sem. — Simple. .

Simple is a language with if-statements,
while-statements, assignment-statements, and integer
arithmetic.

The semantic function I interprets commands.
The semantic function v interprets expressions.
The store o maps variables to their values.
Assignments update the store.

The result of the interpretation (the semantics of the
program) is the resulting store.

o o o 0 0

Y9N Chrrine O2NNE N Mo

Operational Sem. — Simple. ..

Interpreter:

I : OxY—=X
v : ExY—-=TUZ

Semantic Equations:

I(skip,o0) = o
I(V:=Eo) = oV—uv(E o)
I(Cy; Cy,0) = E(Co E(Cy,0))
I(if FE then C] else Cs end,0) = I(Cy,0)if v(E,0) = true
I(Cy,0) if v(E,0) = false

—Spring 2005—50 [13]

Operational Sem. — Simple. ..

Interpreter:
while £ do C end =
if F then (C; while Edo C end) else skip

v(V,o) = o[V]

v(N,o) = N
v(E1+ Ey,0) = v(E1,0)+v(E2,0)
v(Ey = Fy,0) = trueif v(FE,0)=v(F, o)

= falseif v(F,0) # v(E,0)
520—Spring 2005—50 [14]

Den_otational Se‘man‘tj\cs

We think of each program as implementing a
mathematical function.

An imperative program is a function from inputs to
outputs. This function is the meaning of the program.

» Example

exec [while E do C] =
let exec-while env sto =
let Bool ean tr = evaluate [E] env sto in
if tr then
exec-while env (exec [C] env sto)
else sto

exec-whil e

C Chrnrine ONNE N rMci

Denotational Semantics. ..

We need three things:
1. an abstract syntax,

2. a semantic algebra defining a computational model,
and

3. valuation functions.

The valuation functions map the syntactic constructs of
the language to the semantic algebra.

Denotational semantics relies on defining an object in
terms of its constituent parts.

Y9N Chrrine O2NNE N Moel

}enotational Sem. — Peanqﬁrithrpetic

Abstract Syntax (IV € Nat, the Natural Numbers):
N:= 0| S(N)|(N+N)|(NxN)
Semantic Algebra:

+ : Nat — Nat — Nat
Valuation Function:

D : Nat — Nat

D[(n+0)] = DIn]
D[(m+Sn)] = D[(m+n)]+1
D[nx0)] = 0
D[(mx5(n))] = D[((mxn)+m)]

where m, n e Nat
—Spring 2005--50 [17]

Denotational Sem. — Simple

Abstract Syntax:

C e Command
#® E € Expression
#® O € Operator
#® N € Numeral
#® V € Variable

c:= V:=E|ifEthen C; else C; end | while Edo C end | C;

i Ca | skip
E:= VI|N|E OEz | (E)
o=+ |-|*|/]|=|<|>|<>
520—Spring 2005—50 [18]

Denotational Sem. — Simple...

Semantic Algebra:

7 € T =true, false; the boolean values
¢ € Z={..—1,0,1,...}; the integers

+ @ Z—Z—Z

= . Z—Z—-T

o € S = Variable — Numeral; the state

Valuation Functions:

C € C—(S—29)
E ¢ F—-E— (NUT)

C Chrnrine ONNE N Maol

Denotational Sem. — Simple...

C[skip]o = o
ClV:=E]loc = o[V~ E[E]]o
clere2] = cleefo]
C'[if E then Cielse Cy end]o = C[Ci]oif E[E]o = true
= C|[Cy)oif E[E]c = false
C'[while £ do C end] o =
lim C [(if E then C else skip en

ElV]e = a(V)
EIN] = ¢
E [[El + EQ]] = F [[El]] c+ F [[EQ]] o
E[Ey = Es]o = E[Ei]Jo=E[E)]o

Y9N Chrrine O2NNE N nl

| = sz e C— ==

Concrete Syntax of Wren

—Spring 2005—50 [21]

Wren‘ |

= e C— ==

Wren is a small imperative language that we will be
using as a running example.

#® The complete concrete syntax of Wren is given in the
next few slides.

520—Spring 2005—50 [22]

Concrete Syntax

| = ==

program ::= Pr ogr amidentifieri S block

block ::= declaration_seq begi n command_seq end

declaration_seq ::=] declaration declaration_seq
declaration ::= var variable_list . type ;

type ::= i nt eger | bool ean

variable_list ::= variable | variable , variable_list
command_seq ::= command \ command ; command_seq
command ::= variable := expr | SKi p

| r ead variable | Wr i t e integer_expr
| whi | e boolean expr do command_seq end whi | e
| i f boolean_expr t hen command_seq end i f

| i f boolean expr t hen command seq el Se command_seq
end if

C Chrnrine ONNE N rHnl

Concrete Syntax. ..

= ==

expr .:= integer_expr] boolean_expr

integer_expr .= term | integer_expr weak_op term

term .= element] term strong_op element

element ::= numeral | variable | (_integer_expr) | element
boolean_expr ;= boolean_term | boolean_expr Or boolean_term

boolean_term ::= boolean_element
| boolean_term and boolean_element

boolean_element ::= true | f al se | variable | comparison
| not (_ boolean_expr) | (_boolean_expr)

comparison .= integer_expr relation integer_expr

Y9N Chrrine O2NNE N mal

Concrete Syntax. ..

variable ;= identifi er

identifi er::= letter | identifi erletter | identifi erdigit

relation = <= | < |=|>|>=| <>

weak_op = + |

strong.op == * |/

letter 2= abfc|d|e[f[g|h|i[][k[L|m
nfofplalris|tjujviw|x]y]|z

Wren — Example

program binary is
var n,p : integer;

while p<=n do
p:=2"p

end whil e;

p = pl2

while p>0 do
if n>= p then

numeral ::= digit | digit numeral wite 1. n:=np
digit = 01(2[3(4]5(6(7/8]9 el se o
wite 0
end if;
p:=pl2
end while
end
—Spring 2005—50 [25] 520—Spring 2005—50 [26]
Readings and References Acknowledgments

#® Read Chapter 1, in Syntax and Semantics of
Programming Languages, by Ken Slonneger and Barry
I(urtz, http://www.cs.uiowa.edu/~slonnegr/plf/Book.

C Chrnrine ONNE N 71

® Some examples are taken from Introduction to
Programming Languages, by Anthony A. Aaby,

http://burks._brighton.ac.uk/burks/pcinfo/progdocs/plbook/semantic.ht

begi n
read n; p := 2;

#® The Wren lanuage is taken from the book Syntax and
Semantics of Programming Languages, by Ken
Slonneger and Barry Kurtz,
http://www.cs.uiowa.edu/"slonnegr/plf/Book.

Y9N Chrrine O2NNE N ol

http://www.cs.uiowa.edu/~slonnegr/plf/Book
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/semantic.htm
http://www.cs.uiowa.edu/~slonnegr/plf/Book

	Formal Semantics
	Formal Semanticsldots
	Formal Semantics --- Modula-2
	Formal Semantics --- PL/I
	Methods
	Contextual Constraints
	Operational Semantics
	Operational Semanticsldots
	Operational Sem. --- Peano Arithmetic
	Operational Sem. --- Peano Arithmetic
	Operational Sem. --- Simpleldots
	Operational Sem. --- Simpleldots
	Operational Sem. --- Simpleldots
	Denotational Semantics
	Denotational Semanticsldots
	Denotational Sem. --- Peano Arithmetic
	Denotational Sem. --- Simple
	Denotational Sem. --- Simpleldots
	Denotational Sem. --- Simpleldots
	Concrete Syntax of Wren
	Wren
	Concrete Syntax
	Concrete Syntaxldots
	Concrete Syntaxldots
	Wren --- Example
	Readings and References
	Acknowledgments

