
520—Spring 2005—51

CSc 520

Principles of Programming
Languages

51: Semantics — Syntax

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 520—Spring 2005—51

Syntax

The syntax of a language (formal or natural) is the way
the words in a sentence/program can be arranged.

eats dog bone the is not a legal arrangement of
words in English.

= y x + 5 is not a legal arrangement of tokens in
Java.

Somehow, we need to describe what constitutes legal
and illegal sentences in a particular language.

We use production rules to describe the syntax of a
language.

[2]

520—Spring 2005—51

Production Rules

Here’s a production rule:

IfStat → if (expr) stat

This rule states that to construct an if-statement in C
you have to type
1. an if, then
2. a (, then
3. some sort of expression, then
4. a), then finally
5. some sort of statement.

[3] 520—Spring 2005—51

A Grammar for English

A grammar can be used for
1. sentence generation (i.e. which sentences does this

grammar generate?), or
2. parsing (i.e. is sentence S generated by this

grammar?).

Let’s look at a simple grammar for a fragment of
English.

[4]

520—Spring 2005—51

Syntactic Categories

S [Sentence] John likes Sarah’s black hair

N [Noun] John, hair

V [Verb] eating, sat

Adj [Adjective] black, long

Det [Determiner] the, a, every

NP [Noun Phrase] Sarah’s long black hair

VP [Verb Phrase]eating apples

[5] 520—Spring 2005—51

A Simple English Grammar

S → NP VP

VP → V NP

VP → V

NP → N

NP → Det N

N → John

N → Lisa

N → house

V → died

V → kissed

Det → the

Det → a

S, NP, VP, N, Det, V are non-terminal symbols.

John, Lisa, house, died,... are terminal
symbols.

S is the start symbol.

[6]

520—Spring 2005—51

Sentence Generation

1. Start with the start symbol.

2. Pick a non-terminal X on
the right hand side.

3. Pick a grammar rule X →
γ.

4. Replace X with γ.

5. Repeat until left with a
string of words.

S
S→NP VP

=⇒ NP VP
NP→N
=⇒ N VP

N→John
=⇒ John VP

VP→V NP
=⇒ John V NP

V→kissed
=⇒ John kissed NP

NP→N
=⇒ John kissed N

N→Lisa
=⇒ John kissed Lisa

[7] 520—Spring 2005—51

Terminology

A grammar is a 4-tuple

(non-terminals, terminals, productions, start-symbol)

or
(N, Σ, P, S)

A production is of the form α → β where α, β are taken
from N

⋃
Σ.

Read α → β as “rewrite α with β”.

Read ⇒ as “directly derives”.

Read r
⇒ as “directly derives using rule r”.

Read ∗
⇒ as “derives in one or more steps”.

[8]

520—Spring 2005—51

A Simple PL Grammar

Here’s a grammar for a simple programming language:
Program ::= BEGIN Stat END

Stat ::= ident := Expr

Expr ::= Expr + Expr |
Expr * Expr |
ident | number

We write terminal symbols like this.

We write non-terminal symbols like this.

Sometimes we write ::= instead of →.

A → b | c is the same as A → b; A → c. Read | as “or”.

[9] 520—Spring 2005—51

A Simple PL Grammar. . .

We know the sentence
BEGIN a := 5 + 4 * 3 END

is in the language because we can derive it from the start
symbol:

Program ⇒ BEGIN Stat END
⇒ BEGIN ident := Expr END
⇒ BEGIN "a" := Expr END
⇒ BEGIN "a" := Expr + Expr END
⇒ BEGIN "a" := 5 + Expr END
⇒ BEGIN "a" := 5 + Expr * Expr END
⇒ BEGIN "a" := 5 + 4 * Expr END
⇒ BEGIN "a" := 5 + 4 * 3 END

[10]

520—Spring 2005—51

Terminology. . .

Our English grammar is the 4-tuple
({S,NP,V,. . . },
{John,house,died,. . . },
{S → NP VP, VP → V,. . . },
S)

Our PL grammar is the 4-tuple
({Program,Stat,. . . },
{BEGIN,:=,*,. . . },
{ Program ::= BEGIN Stat END,. . . },
Program)

[11] 520—Spring 2005—51

Parse Trees

We often want to show how a particular sentence was
derived. We can do this without listing all the steps
explicitly by drawing a parse tree.

A parse tree is a tree where
1. The root is labeled by the start symbol.
2. Each leaf is labeled by a terminal symbol.
3. Each interior node is labeled by a non-terminal

symbol.

[12]

520—Spring 2005—51

Parse Trees. . .

If one step of our derivation is

· · · A · · · ⇒ · · · X Y Z · · ·

(i.e, we used the rule A → XY Z) then we’ll get a parse
(sub-)tree

.

.

.
.
.
.

.

.

.

.

.

.

X Y Z

A

[13] 520—Spring 2005—51

Parse Trees. . .

S
S→NP VP

=⇒ NP VP
NP→N
=⇒ N VP

N→John
=⇒ John VP

VP→V NP
=⇒ John V NP

V→kissed
=⇒ John kissed NP

NP→N
=⇒ John kissed N

N→Lisa
=⇒ John kissed Lisa

NP

S

VP

N V NP

N

kissedJohn Lisa

[14]

520—Spring 2005—51

Parse Trees. . .

Program ⇒ BEGIN Stat END

⇒ BEGIN ident := Expr END

⇒ BEGIN "a" := Expr END

⇒ BEGIN "a" := Expr + Expr END

⇒ BEGIN "a" := 5 + Expr END

⇒ BEGIN "a" := 5 + Expr * Expr END

⇒ BEGIN "a" := 5 + 4 * Expr END

⇒ BEGIN "a" := 5 + 4 * 3 END

ident

"a" Expr

5 Expr

4

Expr

3

Expr

*

Expr

END

:=

BEGIN Stat

Program

+

[15] 520—Spring 2005—51

Regular Grammars

A grammar is regular if all rules are of the form

A → aB

A → a

By convention, the symbols A, B, C, . . . are
non-terminals, a, b, c, . . . are terminals, and α, β, γ, . . . are
strings of symbols.

Regular grammars are used to describe the lexical
structure of programs, i.e. what tokens look like.

[16]

520—Spring 2005—51

Context-Free Grammars

Programming language syntax is described by a
context free grammar (CFG).

In a CFG all rules are of the form

A → γ

γ is any sequence of terminals or non-terminals. A is a
single non-terminal.

Example: an if-statement consists of an if-token,
expression, then-token, statement, and (maybe) an
else-token followed by a statement.

[17] 520—Spring 2005—51

EBNF

BNF is Backus-Naur Form, a way to write CFGs. EBNF
(Extended BNF) is a more expressive way to write
CFGs.

Repetition and choice are common structures in a
language (and hence, its grammar).

Repetition:

int x,y,z,w,....;

Choice:

class C { ... }

class C extends D { ... }

[18]

520—Spring 2005—51

EBNF. . .

In BNF, our variable declaration

int x,y,z,w,....;

looks like this:
vars ::= ident ident idlist ;

idlist ::= , ident idlist | ε

In EBNF, it looks like this:
vars ::= ident ident { , ident } ;

I.e. {e} means that e is repeated 0 or more times.

[19] 520—Spring 2005—51

EBNF. . .

In BNF, our class declaration

class C extends D { ... }

looks like this:
class ::= class ident extends { . . . }

extends ::= extends ident | ε

In EBNF, it looks like this:
class ::= class ident [extends ident] { . . . }

I.e. [e] means that e is optional.

[20]

520—Spring 2005—51

EBNF for Luca

program ::=
PROGRAM ident ; decl list block .

decl list ::=
{ declaration ; }

declaration ::=
VAR ident : ident |
TYPE ident = RECORD [[field list]] |

TYPE ident = ARRAY expression OF ident |
CONST ident : ident = expression |
PROCEDURE ident ([formal list]) decl list block ;

[21] 520—Spring 2005—51

EBNF for Luca. . .

field list ::= field decl {; field decl }
field decl ::= ident : ident

formal list ::= formal param {; formal param }

formal param ::= [VAR] ident : ident
actual list ::= expression {, expression }
block ::= BEGIN stat seq END

stat seq ::= { statement; }

[22]

520—Spring 2005—51

EBNF for Luca. . .

statement ::=
designator := expression |
WRITE expression | READ designator | WRITELN
ident([actual list])
IF expression THEN stat seq [ELSE stat seq] ENDIF |
FOR ident := expression TO expression [BY expression] DO
stat seq ENDFOR |
WHILE expression DO stat seq ENDDO |
REPEAT stat seq UNTIL expression |
LOOP stat seq ENDLOOP | EXIT

[23] 520—Spring 2005—51

EBNF for Luca. . .

expression ::=
expression bin operator expression | unary operator expression |
(expression) |

real literal | integer literal | char literal | string literal |
designator |

designator ::=
ident | designator[expression] | designator :.: ident

unary operator ::= − | TRUNC | FLOAT| NOT

bin operator ::= + |− |∗ |/ |% | < |<= |= | # | >= | > | AND | OR

[24]

520—Spring 2005—51

Ambiguous Grammars

A grammar is ambiguous if some string of tokens can
produce two (or more) different parse trees.

E ::= E + E | E * E | number

5 + 4 * 3

E ⇒ E + E
⇒ 5 + E
⇒ 5 + E * E
⇒ 5 + 4 * E
⇒ 5 + 4 * 3

E

E E

34

*

E

5

E +

E ⇒ E * E
⇒ E * 3
⇒ E + E * 3
⇒ E + 4 * 3
⇒ 5 + 4 * 3

E

E E+

5 4

E

3

*

E

[25] 520—Spring 2005—51

Structural Ambiguity in English

Ambiguities occur in natural languages also:

with
binoc−
ulars

NP VP

NP

N

S

saw the man

Det

V

I

PP

with
binoc−
ulars

NP VP

NP

N

S

saw the man

PPDet

V

I

[26]

520—Spring 2005—51

Operator Precedence

The precedence of an operator is a measure of its
binding power, i.e. how strongly it attracts its operands.

Usually ∗ has higher precedence than +:

4 + 5 ∗ 3

means
4 + (5 ∗ 3),

not
(4 + 5) ∗ 3.

We say that ∗ binds harder than +.

[27] 520—Spring 2005—51

Operator Associativity

The associativity of an operator describes how
operators of equal precedence are grouped.

+ and − are usually left associative:

4 − 2 + 3

means
(4 − 2) + 3 = 5,

not
4 − (2 + 3) = −1.

We say that + associates to the left.

ˆ associates to the right:

2ˆ3ˆ4 = 2ˆ(3ˆ4).
[28]

520—Spring 2005—51

Operators in C

OPERATOR KIND PREC ASSOC

a[k] Primary 16
f(· · ·) Primary 16
. Primary 16
-> Primary 16

a++, a-- Postfix 15

++a, --a Unary 14
˜ Unary 14
! Unary 14
- Unary 14
& Unary 14
* Unary 14

OPERATOR KIND PREC ASSOC

*, /, % Binary 13 Left
+, - Binary 12 Left
<<, >> Binary 11 Left
<, >, <=, >= Binary 10 Left
== != Binary 9 Left
& Binary 8 Left
ˆ Binary 7 Left
| Binary 6 Left
&& Binary 5 Left
|| Binary 4 Left

? : Ternary 3 Right

=, +=, -=, *=,
/=, %=, <<=,
>>=, &=, ˆ=, |=

Binary 2 Right

, Binary 1 Left

[29] 520—Spring 2005—51

Expression Grammars

We must write unambiguous expression grammars that
reflect the associativity and precedence of all operators.

The next slide gives the algorithm for writing such
grammars.

Resulting Expression Grammar:

expr ::= expr + term | term

term ::= term * factor | factor

factor ::= (expr) | number

[30]

520—Spring 2005—51

Expression Grammars. . .

1. Create one non-terminal for each precedence level, for
example p1, p2, · · · , pn, where pn has the highest
precedence level.

2. For operator op at precedence level i construct the
following production if the operator is
• left associative:
pi ::= pi op pi+1 | pi+1

• right associative:
pi ::= pi+1 op pi | pi+1

3. Construct a production for nonterminal pn+1 which
represents primary expressions such as identifiers,
numbers, parenthesized expressions, etc:
pn+1 ::= (p1) | num | id

[31] 520—Spring 2005—51

Expression Grammars. . .

E ::= E + T | T

T ::= T * F | F

F ::= number

5 + 4 * 3 F

3

TE

T

F

5

*T

F

4

+

E

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ 5 + T
⇒ 5 + T * F
⇒ 5 + F * F
⇒ 5 + 4 * F
⇒ 5 + 4 * 3

E ⇒ E + T
⇒ E + T * F
⇒ E + T * 3
⇒ E + F * 3
⇒ E + 4 * 3
⇒ T + 4 * 3
⇒ F + 4 * 3
⇒ 5 + 4 * 3

[32]

520—Spring 2005—51

Abstract Syntax

We distinguish between a language’s concrete and
abstract syntax.

The concrete syntax describes the textual layout of
programs written in the language, eg. what
if-statements look like.

The abstract syntax describes the logical structure of
the language; eg. that if-statements consist of three
parts (expression, statement, statement).

[33] 520—Spring 2005—51

Abstract Syntax. . .

The abstract syntax also describes the structure of the
abstract syntax tree (AST).

Each abstract syntax rule represents the structure of an
AST node-type.

A parser converts from the program’s concrete syntax
to its corresponding abstract syntax, i.e. it reads the
source code of the input program and produces an AST.

[34]

520—Spring 2005—51

Grammar Example I

Concrete Grammar:
S ::= ident := E |

if E then SS1[else SS2] end | while E do SS end | ε

SS ::= S ; SS | ε

Abstract Grammar:

Assign ::= ident Expr

If ::= Expr StatSeq

IfElse ::= Expr StatSeq StatSeq

While ::= Expr StatSeq

Stat ::= Assign | If | IfElse | While

StatSeq ::= Stat StatSeq | NULL

[35] 520—Spring 2005—51

Grammar Example I. . .

The rule
IfElse ::= Expr StatSeq StatSeq

says that an if-statement consists of three parts, or,
equivalently, that an AST if-node will have three children:

Stat StatExpr

IfElse

We use recursive rules to define lists (e.g.
declaration-lists, statement-lists):
StatSeq ::= Stat StatSeq | NULL

[36]

520—Spring 2005—51

Grammar Example I. . .

Stat ::= Assign | If | IfElse | While

StatSeq ::= Stat StatSeq | NULL

Assign

c 5

c := 5;
d := 6;

if a then

while x do

end;

end;

While Null

StatSeqx

StatSeqa

If Null

StatSeq

Null

StatSeq

Assign

6d

[37] 520—Spring 2005—51

Concrete Grammar Example II

Program ::= program ident ; DeclSeq begin StatSeq end .

DeclSeq ::= Decl ; DeclSeq | ε

Decl ::= var ident : ident

Stat ::= ident := Expr | if Expr then StatSeq else StatSeq

StatSeq ::= Stat ; StatSeq | ε

Expr ::= ident | const

Example:
PROGRAM P;

VAR I : INTEGER;
VAR C : CHAR;
VAR J : INTEGER;

BEGIN I := 6; J := I; END.

[38]

520—Spring 2005—51

Abstract Grammar. . .

Some items in the grammar are attributes (names of
identifiers, e.g.) some are children (expression &
statements in an if-statement, e.g.).

Every child & attribute in the abstract grammar is given
a name:

LOP:Expr.

Example:
IfStat ::= Expr:Expr Then:Stat Else:Stat

[39] 520—Spring 2005—51

Abstract Grammar. . .

Input attributes are data (e.g. identifiers, constants)
created by the lexer/parser. I write them:

⇐Name:String.

Example:
IntConst ::= ⇐Value:INTEGER ⇐Pos:Position

I prefer linked lists to recursion to define lists. A
statement sequence are statements linked on a child
Next:StatSeq. Lists end with an empty node: NoDecl.

[40]

520—Spring 2005—51

Grammar Example. . .

Abstract Grammar:
Program ::= ⇐Name:String DeclSeq:Decl

StatSeq:StatSeq ⇐Pos:Position

Decl ::= VarDecl | ProcDecl | · · · | NoDecl

VarDecl ::= ⇐Name:String ⇐TypeName:String ⇐Pos:Position
Next:Decl

Stat ::= Assign | IfStat | · · · | NoStat

Assign ::= Des:Name Expr:Expr ⇐Pos:Position Next:Stat

IfStat ::= Expr:Expr Then:Stat Else:Stat ⇐Pos:Position
Next:Stat

Expr ::= Name | IntConst

Name ::= ⇐Name:String ⇐Pos:Position

IntConst ::= ⇐Value:INTEGER ⇐Pos:Position

[41] 520—Spring 2005—51

Grammar Example. . .

PROGRAM P;
VAR I : INTEGER;
VAR J : INTEGER;
VAR C : CHAR;

BEGIN
I := 6;
J := I;

END.

NoDecl

NoStat

NextVar

TypeName="INTEGER"

Pos=[4,8]Name="J"

NextVar

TypeName="CHAR"

Name="C" Pos=[3,8]

AST

Program

Name="P"

DeclSeqStatSeq

ExprDes

Assign

Next

Name="I"

Name IntConst

Value=6 Name="I"

Name Name

Name="J"

ExprDes

Assign

Next

Name="I"

NextVar

Pos=[2,8]

TypeName="INTEGER"

Pos=[1,1]

Pos=[6,6] Pos=[7,6]

Pos=[6,3] Pos=[6,8] Pos=[7,3] Pos=[7,8]

[42]

520—Spring 2005—51

Grammar Example III

Assign ::= ident := Expr

Expr ::= Expr + Term | Term

Term ::= Term * Factor | Factor

Factor ::= (Expr) | ident | const

Abstract Grammar (A):

Assign ::= Des:Name Expr:Expr ⇐Pos:Position

Expr ::= BinOp | Name | IntConst

BinOp ::= LOP:Expr ⇐Op:(Add,Mul) ROP:Expr ⇐Pos:Position

Name ::= ⇐Name:String ⇐Pos:Position

IntConst ::= ⇐Value:INTEGER ⇐Pos:Position

[43] 520—Spring 2005—51

Grammar Example III. . .

There is often more than way to design the abstract
grammar.

We can turn attributes into node-kinds and vice versa.

Abstract Grammar (B):

Assign ::= Des:Name Expr:Expr ⇐Pos:Position

Expr ::= Add | Mul | Name | IntConst

Add ::= LOP:Expr ROP:Expr ⇐Pos:Position

Mul ::= LOP:Expr ROP:Expr ⇐Pos:Position

Name ::= ⇐Name:String ⇐Pos:Position

IntConst ::= ⇐Value:INTEGER ⇐Pos:Position

[44]

520—Spring 2005—51

Grammar Example III. . .

ExprDes

Assign

Pos=[1,3]

Name="I"

Name

Pos=[6,3]
Pos=[1,8]

ROPLOP

BinOp

Op=Mul

ROPLOP

BinOp

Op=MulPos=[1,13]

ROPLOP

BinOp

Op=AddPos=[1,17]

Name

Name="J"

Pos=[1,6]

IntConst

Value=5

Pos=[1,11]

Name="K"

Name

Pos=[1,15]

IntConst

Value=3

Pos=[1,19]

I := J * 5 * (K + 3)

[45] 520—Spring 2005—51

Grammar Example III. . .

ExprDes

Assign

Pos=[1,3]

Name="I"

Name

Pos=[6,3]
ROPLOP

Mul

Pos=[1,8]

ROPLOP

Mul

Pos=[1,13]

ROPLOP

Pos=[1,17]

Add

Name

Name="J"

Pos=[1,6]

IntConst

Value=5

Pos=[1,11]

Name="K"

Name

Pos=[1,15]

IntConst

Value=3

Pos=[1,19]

I := J * 5 * (K + 3)

[46]

520—Spring 2005—51

Compiler Grammars

Grammar
Concrete

Grammar
Abstract

TREE
GENERATION

SYNTAX
ANALYSIS

Grammar
Lexical

Lexer

PROG ::= STATS

ADD ::= EXPR EXPR

ASSIGN ::= ID EXPR

EXPR ::= ID | INT | ADD

| NULL
STATS ::= ASSIGN STATS

P::= PROGRAM id ; stats

stats ::= [stat ;]+

stat ::= id := expr

expr ::= expr + expr

| id | int

Parser

Tokensx.c AST

IDENT=L(L|D)*

L=a|...|z|A|...|Z

D=0|...|9

INT=D+

FLOAT=D+.D+

[47] 520—Spring 2005—51

The Chomsky Hierarchy

TYPE GRAMMAR PSR

0 Unrestricted α → β

1 Context Sensitive α → β,
| α |≤| β |

2 Context Free A → β

3 Regular A → aβ

A → a

Type 3

Type 2

Type 1

Type 0

[48]

520—Spring 2005—51

The Chomsky Hierarchy. . .

Regular languages are less powerful than context free
languages.

Languages are organized in the Chomsky Hieararchy
according to their generative power.

Type 3 languages are more restrictive (can describe
simpler languages than) type 2 languages.

Type 3 languages can be parsed in linear time, type 2
languages in cubic time.

Programming languages are in between type 2 and 3.

Two natural languages (Swiss German and Bambara)
are known not to be context free.

[49] 520—Spring 2005—51

Noam Chomsky

www.geocities.com/Athens/Acropolis/5148/chomskybio.html

Linguist, social/political theorist; born in Philadelphia. Son
of a distinguished Hebrew scholar, he was educated at the
University of Pennsylvania, where he was especially
influenced by Zellig Harris; after taking his M.A. there in
1951, he spent four years as a junior fellow at Harvard
(1951–55), then was awarded a Ph.D. from the University of
Pennsylvania (1955). In 1955 he began what would be his
long teaching career at the Massachusetts Institute of
Technology. He became known as one of the principal
founders of transformational-generative grammar, a system
of linguistic analysis that challenges much traditional
linguistics and has much to do with philosophy, logic, and
psycholinguistics; his book Syntactic Structures (1957) was
credited with revolutionizing the discipline of linguistics.

[50]

520—Spring 2005—51

Noam Chomsky. . .

Chomsky’s theory suggests that every human utterance
has two structures: surface structure, the superficial
combining of words, and "deep structure," which are
universal rules and mechanisms. In more practical terms,
the theory argues that the means for acquiring a language
is innate in all humans and is triggered as soon as an infant
begins to learn the basics of a language. Outside this highly
rarefied sphere, Chomsky early on began to promote his
radical critique of American political, social, and economic
policies, particularly of American foreign policy as effected
by the Establishment and presented by the media; he was
outspoken in his opposition to the Vietnam War and later to
the Persian Gulf War. His extensive writings in this area
include American Power and the New Mandarins (1969)
and Human Rights and American Foreign Policy (1978).

[51] 520—Spring 2005—51

Noam Chomsky. . .

“If the Nüremberg laws were applied today, then every
Post-War American president would have to be
hanged."

“The corporatization of America during the past century
[has been] an attack on democracy.”

“Any dictator would admire the uniformity and
obedience of the [U.S.] media.”

“Judged in terms of the power, range, novelty and
influence of his thought, Noam Chomsky is arguably the
most important intellectual alive.” (The New York Times
Book Review)

Chomsky on terrorism:
http://www.zmag.org/GlobalWatch/chomskymit.htm.

[52]

www.geocities.com/Athens/Acropolis/5148/chomskybio.html
http://www.zmag.org/GlobalWatch/chomskymit.htm

520—Spring 2005—51

Noam Chomsky. . .

Chomsky vs B. F. Skinner: Famous debate in the late
50’s, early 60’s. Skinner was a behaviorist, believing
that children learn language by imitating their parents.
Chomsky refuted this, claiming that we all have innate
language mechanisms.

Nim Chimpsky was taught sign language in 1970s. It
was a lost cause. He could ask for things, but not much
more.

[53] 520—Spring 2005—51

Summary

The job of a parser is to convert from concrete syntax to
abstract syntax.

We use context free grammars to describe both the
concrete and the abstract syntax.

The concrete syntax is described in the language
manual of the language we’re compiling.

The abstract syntax we make up ourselves. There are
many ways to define the abstract syntax of a language
and personal preference will play a role in how we
construct it.

[54]

520—Spring 2005—51

Readings and References

Read Scott, Chapter 2: Programming Language Syntax

Read Louden:

Regular Expressions 34–47.

Context-Free Grammars 95–142.

or the Dragon Book:

grammars 165–171

associativity & precedence 30–32

ambiguity 171,174–175

derivations 167–169

parse trees 169–171

top-down parsing 41–43

left recursion 47–48

[55] 520—Spring 2005—51

Exam Problem

Use this abstract syntax to draw an AST for the TINY program below:

PROGRAM → STATSEQ

STATSEQ → STAT STATSEQ | NULL

STAT → ASSIGN | PRINT | DECL

DECL → ident type

ASSIGN → ident EXPR

PRINT → EXPR

EXPR → BINOP | IDENT | INTLIT

BINOP → op EXPR EXPR

IDENT → ident

INTLIT → int

FLTLIT → float

BEGIN

INT x;

PRINT x + 9.9;

END

[56]

	Syntax
	Production Rules
	A Grammar for English
	Syntactic Categories
	A Simple English Grammar
	Sentence Generation
	Terminology
	A Simple PL Grammar
	A Simple PL Grammarldots
	Terminologyldots
	Parse Trees
	Parse Treesldots
	Parse Treesldots
	Parse Treesldots
	Regular Grammars
	Context-Free Grammars
	EBNF
	EBNFldots
	EBNFldots
	EBNF for Luca
	EBNF for Lucaldots
	EBNF for Lucaldots
	EBNF for Lucaldots
	Ambiguous Grammars
	Structural Ambiguity in English
	Operator Precedence
	Operator Associativity
	Operators in C
	Expression Grammars
	Expression Grammarsldots
	Expression Grammarsldots
	Abstract Syntax
	Abstract Syntaxldots
	Grammar Example I
	Grammar Example Ildots
	Grammar Example Ildots
	Concrete Grammar Example II
	Abstract Grammarldots
	Abstract Grammarldots
	Grammar Exampleldots
	Grammar Exampleldots
	Grammar Example III
	Grammar Example IIIldots
	Grammar Example IIIldots
	Grammar Example IIIldots
	Compiler Grammars
	The Chomsky Hierarchy
	The Chomsky Hierarchyldots
	Noam Chomsky
	Noam Chomskyldots
	Noam Chomskyldots
	Noam Chomskyldots
	Summary
	Readings and References
	Exam Problem

