
520—Spring 2005—6

CSc 520

Principles of Programming
Languages

6: Scheme — Symbols and Structures

Christian Collberg

collberg@cs.arizona.edu

Department of Computer Science

University of Arizona

Copyright c© 2004 Christian Collberg

[1] 520—Spring 2005—6

Symbols

In addition to numbers, strings, and booleans, Scheme
has a primitive data-type (atom) called symbol .

A symbol is a lot like a string. It is written:

’identifier

Here are some examples:

’apple
’pear
’automobile

(symbol? arg) checks if an atom is a symbol.

To compare two symbols for equality, use (eq? arg1
arg2). HTDP says to use (symbol=? arg1 arg2)
but DrScheme doesn’t seem to support this.

[2]

520—Spring 2005—6

Symbols. . .

> (symbol? "hello")
#f
> (symbol? ’apple)
#t
> (eq? ’a ’a)
#t
> (eq? ’a ’b)
#f
> (display ’apple)
apple
> (string->symbol "apple")
apple
> (symbol->string ’apple)
"apple"

[3] 520—Spring 2005—6

Symbols. . .

(define (healthy? f)
(case f

[(sushi sashimi) ’hell-yeah]
[(coke) ’I-wish]
[(licorice) ’no-but-yummy]
[else ’nope]

))
> (healthy? ’sashimi)
hell-yeah
> (healthy? ’coke)
i-wish
> (healthy? ’licorice)
no-but-yummy
> (healthy? ’pepsi)
nope

[4]

520—Spring 2005—6

Structures

Some versions of Scheme have structures . Select
Advanced Student in DrScheme.

These are similar to C’s struct, and Java’s class (but
without inheritance and methods).

Use define-struct to define a structure:

(define-struct struct-name (f1 f2 ...))

define-struct will automatically define a
constructor:

(make-struct-name (f1 f2 ...))

and field-selectors:
struct-name-f1
struct-name-f2

[5] 520—Spring 2005—6

Structures. . .

(define-struct person (name sex date-of-birth))

> (define bob (make-person "bob" ’male ’1978))
> bob
(make-person "bob" ’male ’1978)
> (define alice (

make-person "alice" ’female ’1979))

> (person-sex bob)
’male
> (person-date-of-birth alice)
’1979

[6]

520—Spring 2005—6

Equivalence

Every language definition has to struggle with
equivalence; i.e. what does it mean for two language
elements to be the same?

In Java, consider the following example:
� �

void M(S t r i n g s1 , S t r i n g s2 , i n t i1 , i n t i 2) {

i f (i 1 == i 2) . . . ;

i f (s1 == s2) . . . ;

i f (s1 . equals (s2)) . . . ;

}
� �

Why can I use == to compare ints, but it is it usually
wrong to use it to compare strings?

[7] 520—Spring 2005—6

Equivalence. . .

Scheme has three equivalence predicates eq?, eqv?
and equal?.

eq? is the pickiest of the three, then comes eqv?, and
last equal?.

In other words,
If (equal? a b) returns #t, then so will (eq? a
b) and (eqv? a b).
If (eqv? a b) returns #t, then so will (eq? a
b)..

(equal? a b) generally returns #t if a and b are
structurally the same, i.e. print the same.

[8]

520—Spring 2005—6

Equivalence. . .

(eqv? a b) returns #t if:

a and b are both #t or both #f.

a and b are both symbols with the same name.

a and b are both the same number.

a and b are strings that denote the same locations in
the store.

> (define S "hello")
> (eqv? S S)
true
> (eqv? "hello" "hello")
false
> (eqv? ’hello ’hello)
true

[9] 520—Spring 2005—6

Equivalence. . .

(equal? a b) returns #t if a and b are strings that
print the same.

This is known as structural equivalence.

> (equal? "hello" "hello")
true
> (equal? alice bob)
false
> (define alice1 (

make-person "alice" ’female ’1979))
> (define alice2 (

make-person "alice" ’female ’1979))
> (equal? alice1 alice2)
true

[10]

	Symbols
	Symbolsldots
	Symbolsldots
	Structures
	Structuresldots
	Equivalence
	Equivalenceldots
	Equivalenceldots
	Equivalenceldots

