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Constructing L.ists

# The most important data structure in Scheme is the list.
# Lists are constructed using the function cons:
(cons first rest)

cons returns a list where the first elementis fi r st ,
followed by the elements from the list r est .

> (cons "a '())

(a)
> (cons "a (cons 'b "()))
(a b)
> (cons "a (cons 'b (cons 'c "())))
(a b c)
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Constructing Lists. ..

# There are a variety of short-hands for constructing lists.

# Lists are heterogeneous, they can contain elements of
different types, including other lists.

>'(a b c)
(a b c)

> (list "a’'b 'c)
(a b c)

>'(1 a "hello")
(1 a "hello")
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Examining Lists

® (car L) returns the first element of a list. Some
implementations also define thisas (first L).

® (cdr L) returns the list L, without the first element.
Some implementations also define thisas (rest L).

# Note that car and cdr do not destroy the list, just
return its parts.

> (car "(a b c))
"a

> (cdr "(a b c))
"(b c)
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Examining Lists. ..

s

# Note that (cdr L) always returns a list.

> (car (cdr "(a b c)))

"b

> (cdr "(a b c))

"(b c)

> (cdr (cdr "(a b c)))

" (c)

> (cdr (cdr (cdr "(a b c))))

()

> (cdr (cdr (cdr (cdr "(a b c)))))
error
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Examining Lists. ..

s senre o e

# A shorthand has been developed for looking deep into a
list:

(clist of "a" and "d"r L)
Each " a" stands for a car, each " d" for a cdr.
»® For example, (caddar L) stands for
(car (cdr (cdr (car L))))

> (cadr "(a b ¢))

b
> (cddr "(a b c))
" (¢)
> (caddr "(a b ¢))
"C
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Lists of Lists

=

#® Any S-expression is a valid list in Scheme.
® That is, lists can contain lists, which can contain lists,

which...
>"(a (b c))
(a (b c))

> (1 "hello" ("bye" 1/4 (apple)))

(1 "hello" ("bye" 1/4 (apple)))

> (caaddr (1 "hello" ("bye" 1/4 (apple))))
n byell
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List Equivalence

® (equal? L1 L2) does a structural comparison of
two lists, returning #t if they “look the same”.

® (eqv? L1 L2) does a “pointer comparison”,
returning #t if two lists are “the same object”.

> (eqv? '(a bc) "(aboec))
fal se

> (equal? ’'(a bc) "(aboc))
true
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List Equivalence...

e

# This is sometimes referred to as deep equivalence vs.
shallow equivalence.

> (define nyLi st

"(a b c))

> (eqv? nyList nyList)
true
> (eqv? "(a (b c (d))) "(a (bc (d))))
fal se
> (equal? "(a (b c (d))) "(a (b c (d))))
true
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Predicates on Lists

® (null?
® (list?

L) returns #t for an empty list.
L) returns #t if the argument is a list.

> (null? ()

#t
> (null?
#f
> (list?
#t
> (list?

‘(a b))
'(a bc))

"(abc)")

#f
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List Functions — Examples. ..

;(rrenq’Z’(XyZW))

t

> (car (cdr (car "((a) b (c d)))))
(c d)

> (caddr " ((a) b (c d)))

(c d)

> (cons "a '())

(a)

> (cons 'd '(e))

(d e)

> (cons ’'(a b)

((a b) (c d))

"(c d))

Recursion over Lists — cdr-recu\rsﬂion

o

» Compute the length of a list.
® This is called cdr-recursion.

(define (length x)

(cond
[(null? x) 0]
[else (+ 1 (length (cdr x)))]
)
)
> (length " (1 2 3))
3

> (length "(a (b c) (de f)))
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cursion over Lists —Mcar-(;d»r-recursiod Recursion Over Lists — Returning a List

# Count the number of atoms in an S-expression.
# This is called car-cdr-recursion.

(define (atontount x)
(cond
[(null? x) 0]
[(list? Xx)
(+ (atontount (car x))
(atontount (cdr x)))]
[el se 1]
))
> (atontount (1))
1
> (atontount '("hello" a b (c 1 (d))))
6
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# Map a list of numbers to a new list of their absolute
values.

# In the previous examples we returned an atom — here
we’re mapping a list to a new list.

(define (abs-list L)
(cond

[Cnull? L) ()]

[el se (cons (abs (car L))
(abs-list (cdr L)))]

)
)
> (abs-list (1 -1 2 -3 5))
(112 35)
520—Spring 2005—7 [14]

Recursion Over\ Twoil_»ists

® (atomlist-eq? L1 L2) returns#t ifL1and L2
are the same list of atoms.

(define (atomlist-eq? L1 L2)
(cond

[(and (null? L1) (null? L2)) #t]

[(or (null? L1) (null? L2)) #f]

[el se (and
(atonf? (car L1))
(atonf? (car L2))
(eqv? (car L1) (car L2))
(atomlist-eq? (cdr L1) (cdr L2)))]

Recursion Over Two Lists. .

> (atomlist-eq? (1 2 3) '"(1 2 3))
#t
> (atomlist-eq? (12 3) '(1 2 a))
#f



Appen\(‘;\l‘ |

(define (append L1 L2)
(cond
[ (null? L1) L2]
[ el se
(cons (car L1)

i ——

(append (cdr L1) L2))]

)
)

> (append ' (1 2) "(3 4))
(1 2 3 4)

> (append " () " (3 4))

(3 4)

> (append " (1 2) "())
(12
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Deep Recursion — equal ?

= = o

(define (equal? x vy)
(or (and (aton? x) (atonf? vy) (eq? Xx Yy))
(and (not (aton®? x))
(not (aton®? vy))
(equal ? (car x) (car y))
(equal ? (cdr x) (cdr y)))))

> (equal? 'a 'a)

#t

> (equal? "(a) "(a))

#t

> (equal ? " ((a)) "((a)))
#t
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atterns of Recursion — cdr-recu rsio_n

#® We process the elements of the list one at a time.

# Nested lists are not descended into.

(define (fun L)

(cond
[(null? L) return-val ue]
[else ...(car L)

)

)

=

...(fun (cdr L)) ..

-

Patterns of Recursion — car-cdr-recursio

=

#® We descend into nested lists, processing every atom.

(define (fun x)
(cond

[(null? x) return-val ue]

[ (aton? x) return-val ue]

[(list? Xx)
...(fun (car x)) ...
..(fun (cdr x)) ...]

[ el se return-val ue]

))



Patterns of Recursion — Maps

# Here we map one list to another.

(define (map L)

(cond
[(null? L) " ()]
[else (cons (...(car L) ...)
) (map (cdr L)))]
)
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Example: Binary Trees

# A binary tree can be represented as nested lists:

(420 O 6050 0O) O))

# Each node is represented by a triple
(data | eft-subtree right-subtree)

» Empty subtrees are represented by () .

520—Spring 2005—7 [22]

Example: Binary Trees...

(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
(cond
[(=NO) "]
[el se (begin
(display " ")
(print-spaces (- N 1))))))

(define (print-tree tree)
(print-tree-rec tree 0))

Example: Binary Trees...

(define (print-tree-rec tree D)
(cond
[(null? tree)]
[el se (begin
(print-spaces D)
(display (key tree)) (newine)

(print-tree-rec (left tree) (+ D 1))
(print-tree-rec (right tree) (+ D 1))

)1))

> (print-tree " (4 (2 () ()) (6 (50 O) O)))
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Binary Trees using Structures

# \We can use structures to define tree nodes.

(define-struct node (data left right))

(define (tree-nenber x T)
(cond
[(nul 2 T) #f]
[(= x (node-data T)) #t]
[(< x (node-data T))
(tree-nmenber x (node-left T))]
[el se
(tree-nmenber x (node-right T))]
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Binary Trees using Structures. ..

(define tree
(make- node 4
(make-node 2 ' () ' ())
(make-node 6
(make-node 5 ' () '())
(make-node 9 () ' ()))))
> (tree-nmenber 4 tree)
true
> (tree-nmenber 5 tree)
true
> (tree-nmenber 19 tree)
fal se
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Homework |

= == e

# Write a function swapFi r st Two which swaps the first
two elements of a list. Example: (1 2 3 4) = (2 1
3 4).

# Write a function swapTwol nLi st s which, given a list of
lists, forms a new list of all elements in all lists, with first
two of each swapped. Example: ((1 2 3) (4) (5
6)) = (2134605).
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