CSc 520

Principles of Programming
Languages
7: Scheme — List Processing

Christian Collberg

col | berg@s. ari zona. edu

Department of Computer Science
University of Arizona

Copyright (© 2004 Christian Collberg

—Spring 2005—7 [1]

Constructing L.ists

The most important data structure in Scheme is the list.
Lists are constructed using the function cons:
(cons first rest)

cons returns a list where the first elementis fi r st ,
followed by the elements from the list r est .

> (cons "a '())

(a)
> (cons "a (cons 'b "()))
(a b)
> (cons "a (cons 'b (cons 'c "())))
(a b c)
520—Spring 2005—7 [2]

Constructing Lists. ..

There are a variety of short-hands for constructing lists.

Lists are heterogeneous, they can contain elements of
different types, including other lists.

>'(a b c)
(a b c)

> (list "a’'b 'c)
(a b c)

>'(1 a "hello")
(1 a "hello")

 Chnrinme O2N0NE 7 2l

Examining Lists

® (car L) returns the first element of a list. Some
implementations also define thisas (first L).

® (cdr L) returns the list L, without the first element.
Some implementations also define thisas (rest L).

Note that car and cdr do not destroy the list, just
return its parts.

> (car "(a b c))
"a

> (cdr "(a b c))
"(b c)

Y9N Chrrine O2NNE 7 r1

Examining Lists. ..

s

Note that (cdr L) always returns a list.

> (car (cdr "(a b c)))

"b

> (cdr "(a b c))

"(b c)

> (cdr (cdr "(a b c)))

" (c)

> (cdr (cdr (cdr "(a b c))))

()

> (cdr (cdr (cdr (cdr "(a b c)))))
error

—Spring 2005—7 [5]

Examining Lists. ..

s senre o e

A shorthand has been developed for looking deep into a
list:

(clist of "a" and "d"r L)
Each " a" stands for a car, each " d" for a cdr.
»® For example, (caddar L) stands for
(car (cdr (cdr (car L))))

> (cadr "(a b ¢))

b
> (cddr "(a b c))
" (¢)
> (caddr "(a b ¢))
"C

520—Spring 2005—7 [6]

Lists of Lists

=

#® Any S-expression is a valid list in Scheme.
® That is, lists can contain lists, which can contain lists,

which...
>"(a (b c))
(a (b c))

> (1 "hello" ("bye" 1/4 (apple)))

(1 "hello" ("bye" 1/4 (apple)))

> (caaddr (1 "hello" ("bye" 1/4 (apple))))
n byell

 Chnrinme O2N0NE 7 r-1

List Equivalence

® (equal? L1 L2) does a structural comparison of
two lists, returning #t if they “look the same”.

® (eqv? L1 L2) does a “pointer comparison”,
returning #t if two lists are “the same object”.

> (eqv? '(a bc) "(aboec))
fal se

> (equal? ’'(a bc) "(aboc))
true

Y9N Chrrine O2NNE 7 rol

List Equivalence...

e

This is sometimes referred to as deep equivalence vs.
shallow equivalence.

> (define nyLi st

"(a b c))

> (eqv? nyList nyList)
true
> (eqv? "(a (b c (d))) "(a (bc (d))))
fal se
> (equal? "(a (b c (d))) "(a (b c (d))))
true

—Spring 2005—7 [l

Predicates on Lists

® (null?
® (list?

L) returns #t for an empty list.
L) returns #t if the argument is a list.

> (null? ()

#t
> (null?
#f
> (list?
#t
> (list?

‘(a b))
'(a bc))

"(abc)")

#f

520—Spring 2005—7 [10]

List Functions — Examples. ..

;(rrenq’Z’(XyZW))

t

> (car (cdr (car "((a) b (c d)))))
(c d)

> (caddr " ((a) b (c d)))

(c d)

> (cons "a '())

(a)

> (cons 'd '(e))

(d e)

> (cons ’'(a b)

((a b) (c d))

"(c d))

Recursion over Lists — cdr-recu\rsﬂion

o

» Compute the length of a list.
® This is called cdr-recursion.

(define (length x)

(cond
[(null? x) 0]
[else (+ 1 (length (cdr x)))]
)
)
> (length " (1 2 3))
3

> (length "(a (b c) (de f)))

Y9N Chrrine O2NNE 7

cursion over Lists —Mcar-(;d»r-recursiod Recursion Over Lists — Returning a List

Count the number of atoms in an S-expression.
This is called car-cdr-recursion.

(define (atontount x)
(cond
[(null? x) 0]
[(list? Xx)
(+ (atontount (car x))
(atontount (cdr x)))]
[el se 1]
))
> (atontount (1))
1
> (atontount '("hello" a b (c 1 (d))))
6

—Spring 2005—7 [13]

Map a list of numbers to a new list of their absolute
values.

In the previous examples we returned an atom — here
we’re mapping a list to a new list.

(define (abs-list L)
(cond

[Cnull? L) ()]

[el se (cons (abs (car L))
(abs-list (cdr L)))]

)
)
> (abs-list (1 -1 2 -3 5))
(112 35)
520—Spring 2005—7 [14]

Recursion Over\ Twoil_»ists

® (atomlist-eq? L1 L2) returns#t ifL1and L2
are the same list of atoms.

(define (atomlist-eq? L1 L2)
(cond

[(and (null? L1) (null? L2)) #t]

[(or (null? L1) (null? L2)) #f]

[el se (and
(atonf? (car L1))
(atonf? (car L2))
(eqv? (car L1) (car L2))
(atomlist-eq? (cdr L1) (cdr L2)))]

Recursion Over Two Lists. .

> (atomlist-eq? (1 2 3) '"(1 2 3))
#t
> (atomlist-eq? (12 3) '(1 2 a))
#f

Appen\(‘;\l‘ |

(define (append L1 L2)
(cond
[(null? L1) L2]
[el se
(cons (car L1)

i ——

(append (cdr L1) L2))]

)
)

> (append ' (1 2) "(3 4))
(1 2 3 4)

> (append " () " (3 4))

(3 4)

> (append " (1 2) "())
(12

—Spring 2005—7 [17]

Deep Recursion — equal ?

= = o

(define (equal? x vy)
(or (and (aton? x) (atonf? vy) (eq? Xx Yy))
(and (not (aton®? x))
(not (aton®? vy))
(equal ? (car x) (car y))
(equal ? (cdr x) (cdr y)))))

> (equal? 'a 'a)

#t

> (equal? "(a) "(a))

#t

> (equal ? " ((a)) "((a)))
#t

520—Spring 2005—7 [18]

atterns of Recursion — cdr-recu rsio_n

#® We process the elements of the list one at a time.

Nested lists are not descended into.

(define (fun L)

(cond
[(null? L) return-val ue]
[else ...(car L)

)

)

=

...(fun (cdr L)) ..

-

Patterns of Recursion — car-cdr-recursio

=

#® We descend into nested lists, processing every atom.

(define (fun x)
(cond

[(null? x) return-val ue]

[(aton? x) return-val ue]

[(list? Xx)
...(fun (car x)) ...
..(fun (cdr x)) ...]

[el se return-val ue]

))

Patterns of Recursion — Maps

Here we map one list to another.

(define (map L)

(cond
[(null? L) " ()]
[else (cons (...(car L) ...)
) (map (cdr L)))]
)
—Spring 2005—7 [21]

Example: Binary Trees

A binary tree can be represented as nested lists:

(420 O 6050 0O) O))

Each node is represented by a triple
(data | eft-subtree right-subtree)

» Empty subtrees are represented by () .

520—Spring 2005—7 [22]

Example: Binary Trees...

(define (key tree) (car tree))
(define (left tree) (cadr tree))
(define (right tree) (caddr tree))

(define (print-spaces N)
(cond
[(=NO) "]
[el se (begin
(display " ")
(print-spaces (- N 1))))))

(define (print-tree tree)
(print-tree-rec tree 0))

Example: Binary Trees...

(define (print-tree-rec tree D)
(cond
[(null? tree)]
[el se (begin
(print-spaces D)
(display (key tree)) (newine)

(print-tree-rec (left tree) (+ D 1))
(print-tree-rec (right tree) (+ D 1))

)1))

> (print-tree " (4 (2 () ()) (6 (50 O) O)))

Y9N Chrrine O2NNE 7

Binary Trees using Structures

\We can use structures to define tree nodes.

(define-struct node (data left right))

(define (tree-nenber x T)
(cond
[(nul 2 T) #f]
[(= x (node-data T)) #t]
[(< x (node-data T))
(tree-nmenber x (node-left T))]
[el se
(tree-nmenber x (node-right T))]

—Spring 2005—7 [25]

Binary Trees using Structures. ..

(define tree
(make- node 4
(make-node 2 ' () ' ())
(make-node 6
(make-node 5 ' () '())
(make-node 9 () ' ()))))
> (tree-nmenber 4 tree)
true
> (tree-nmenber 5 tree)
true
> (tree-nmenber 19 tree)
fal se

520—Spring 2005—7 [26]

Homework |

= == e

Write a function swapFi r st Two which swaps the first
two elements of a list. Example: (1 2 3 4) = (2 1
3 4).

Write a function swapTwol nLi st s which, given a list of
lists, forms a new list of all elements in all lists, with first
two of each swapped. Example: ((1 2 3) (4) (5
6)) = (2134605).

 Chnrinme O2N0NE 7 71

	Constructing Lists
	Constructing Listsldots
	Examining Lists
	Examining Listsldots
	Examining Listsldots
	Lists of Lists
	List Equivalence
	List Equivalenceldots
	Predicates on Lists
	List Functions --- Examplesldots
	Recursion over Lists --- cdr-recursion
	Recursion over Lists --- car-cdr-recursion
	Recursion Over Lists --- Returning a List
	Recursion Over Two Lists
	Recursion Over Two Listsldots
	Append
	Deep Recursion --- {	t equal?}
	Patterns of Recursion --- cdr-recursion
	Patterns of Recursion --- car-cdr-recursion
	Patterns of Recursion --- Maps
	Example: Binary Trees
	Example: Binary Treesldots
	Example: Binary Treesldots
	Binary Trees using Structures
	Binary Trees using Structuresldots
	Homework

