1 Higher-Order Functions

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- Higher-order function aren’t weird; the differentiation operation from high-school calculus is higher-order:

\[
\text{deriv} :: (\text{Float} \rightarrow \text{Float}) \rightarrow \text{Float} \rightarrow \text{Float} \\
\text{deriv} \ f \ x = (f(x+dx) - f \ x) / 0.0001
\]

- Many recursive functions share a similar structure. We can capture such “recursive patterns” in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

2 Currying Revisited

- We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

 \text{Uh, what was this currying thing?}

- A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.
3 Currying Revisited...

How is a curried function defined?

- A curried function of \(n \) arguments (of types \(t_1, t_2, \ldots, t_n \)) that returns a value of type \(t \) is defined like this:

\[
\text{fun} : : t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_n \rightarrow t
\]

- This is sort of like defining \(n \) different functions (one for each \(\rightarrow \)). In fact, we could define these functions explicitly, but that would be tedious:

\[
\begin{align*}
\text{fun}_1 & : : t_2 \rightarrow \cdots \rightarrow t_n \rightarrow t \\
\text{fun}_1 a_2 \cdots a_n & = \cdots \\
\text{fun}_2 & : : t_3 \rightarrow \cdots \rightarrow t_n \rightarrow t \\
\text{fun}_2 a_3 \cdots a_n & = \cdots
\end{align*}
\]

4 Currying Revisited...

Duh, how about an example?

- Certainly. Let's define a recursive function \(\text{get_nth } n \) \(\text{x}\) which returns the \(n \):th element from the list \(\text{x}\):

\[
\begin{align*}
\text{get_nth } 1 & (x:__) = x \\
\text{get_nth } n & (_ :xs) = \text{get_nth } (n-1) \text{ xs}
\end{align*}
\]

\(\text{get_nth } 10 \) "Bartholomew" \(\Rightarrow \) 'e'

- Now, let's use \(\text{get_nth} \) to define functions \(\text{get_second}, \text{get_third}, \text{get_fourth}, \) and \(\text{get_fifth}, \) without using explicit recursion:

\[
\begin{align*}
\text{get_second} & = \text{get_nth } 2 & \text{get_fourth} & = \text{get_nth } 4 \\
\text{get_third} & = \text{get_nth } 3 & \text{get_fifth} & = \text{get_nth } 5
\end{align*}
\]

5 Currying Revisited...

\(\text{get_fifth} \) "Bartholomew" \(\Rightarrow \) 'h'

map (\(\text{get_nth } 3 \))

["mob","sea","tar","bat"] \(\Rightarrow \)

"bart"

So, what's the type of \(\text{get_second} \)?

- Remember the Rule of Cancellation?

- The type of \(\text{get_nth} \) is \(\text{Int} \rightarrow [a] \rightarrow a \).

- \(\text{get_second} \) applies \(\text{get_nth} \) to one argument. So, to get the type of \(\text{get_second} \) we need to cancel \(\text{get_nth} \)'s first type: \(\text{Int} \rightarrow [a] \rightarrow a \equiv [a] \rightarrow a \).
6 Patterns of Computation

- **Mappings**
 - Apply a function \(f \) to the elements of a list \(L \) to make a new list \(L' \). Example: Double the elements of an integer list.

- **Selections**
 - Extract those elements from a list \(L \) that satisfy a predicate \(p \) into a new list \(L' \). Example: Extract the even elements from an integer list.

- **Folds**
 - Combine the elements of a list \(L \) into a single element using a binary function \(f \). Example: Sum up the elements in an integer list.

7 The map Function

- \(\text{map} \) takes two arguments, a function and a list. \(\text{map} \) creates a new list by applying the function to each element of the input list.

- \(\text{map} \)'s first argument is a function of type \(a \rightarrow b \). The second argument is a list of type \([a] \). The result is a list of type \([b] \).

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
\]

\[
\text{map} f \ [] = []
\]

\[
\text{map} f (x:xs) = f x : \text{map} f xs
\]

- We can check the type of an object using the \texttt{:type} command. Example: \texttt{:type map}.

8 The map Function...

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
\]

\[
\text{map} f \ [] = []
\]

\[
\text{map} f (x:xs) = f x : \text{map} f xs
\]

\[
\text{map inc [1,2,3,4]} \Rightarrow [2,3,4,5]
\]

9 The map Function...

\[
\text{map} :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
\]

\[
\text{map} f \ [] = []
\]

\[
\text{map} f (x:xs) = f x : \text{map} f xs
\]

\[
\text{map f []} = [] \text{ means: “The result of applying the function f to the elements of an empty list is the empty list.”}
\]
map \(f \) \((x:xs)\) = \(f \) \(x \) : map \(f \) \(xs \) means: “applying \(f \) to the list \((x:xs)\) is the same as applying \(f \) to \(x \) (the first element of the list), then applying \(f \) to the list \(xs \), and then combining the results.”

10 The map Function...

Simulation:

map square [5,6] ⇒
 square 5 : map square [6] ⇒
 25 : map square [6] ⇒
 25 : (square 6 : map square []) ⇒
 25 : (36 : map square []) ⇒
 25 : (36 : []) ⇒
 25 : [36] ⇒
 [25,36]

11 The filter Function

- Filter takes a predicate \(p \) and a list \(L \) as arguments. It returns a list \(L' \) consisting of those elements from \(L \) that satisfy \(p \).
- The predicate \(p \) should have the type \(\text{a \rightarrow Bool} \), where \(\text{a} \) is the type of the list elements.

Examples:

filter even [1..10] ⇒ [2,4,6,8,10]
filter even (map square [2..5]) ⇒
 filter even [4,9,16,25] ⇒ [4,16]
filter gt10 [2,5,9,11,23,114]
 where gt10 x = x > 10 ⇒ [11,23,114]

12 The filter Function...

- We can define filter using either recursion or list comprehension.

Using recursion:

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
 | p x = x : filter p xs
 | otherwise = filter p xs

Using list comprehension:

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]
13 The filter Function...

\[\text{filter :: (a->Bool)->[a]->[a]} \]
\[
\text{filter} _ \ [] = []
\]
\[
\text{filter} \ p \ (x:xs)
\]
\[
| \ p \ x = x \ : \ \text{filter} \ p \ xs
\]
\[
| \ \text{otherwise} = \text{filter} \ p \ xs
\]

\text{filter even [1,2,3,4] \Rightarrow [2,4]} \]

14 The filter Function...

- \text{doublePos} doubles the positive integers in a list.

\text{getEven :: [Int] -> [Int]}
\text{getEven xs = filter even xs}

\text{doublePos :: [Int] -> [Int]}
\text{doublePos xs = map dbl (filter pos xs)}
\text{where dbl x = 2 * x}
\text{pos x = x > 0}

Simulations:

\text{getEven [1,2,3] \Rightarrow [2]}

\text{doublePos [1,2,3,4] \Rightarrow}
\text{map dbl (filter pos [1,2,3,4]) \Rightarrow}
\text{map dbl [2,4] \Rightarrow [4,8]}

15 fold Functions

- A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

Examples:

\text{sum [1,2,3,4,5] \equiv}
\text{(1 + (2 + (3 + (4 + (5 + 0))))) \Rightarrow 15}

\text{concat ["H","i","!"] \equiv}
\text{("H" ++ ("i" ++ ("!" ++ ")))) \Rightarrow "Hi!"}

- Notice how similar these operations are. They both combine the elements in a list using some binary operator (+, ++), starting out with a “seed” value (0, "").
16 fold Functions...

- Haskell provides a function `foldr` ("fold right") which captures this pattern of computation.
- `foldr` takes three arguments: a function, a seed value, and a list.

Examples:

```plaintext
foldr (+) 0 [1,2,3,4,5] ⇒ 15
foldr (++) "" ["H","i","!"] ⇒ "Hi!
```

```plaintext
foldr :: (a->b->b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

17 fold Functions...

- Note how the fold process is started by combining the last element \(x_n \) with \(z \). Hence the name seed.

\[
foldr(\oplus)z[x_1 \cdots x_n] = (x_1 \oplus (x_2 \oplus \cdots (x_n \oplus z)))
\]

- Several functions in the standard prelude are defined using `foldr`:

```plaintext
and, or :: [Bool] → Bool
and xs = foldr (&&) True xs
or xs = foldr (||) False xs

?? or [True,False,False] ⇒
foldr (||) False [True,False,False] ⇒
True || (False || (False || False)) ⇒ True
```

18 fold Functions...

- Remember that `foldr` binds from the right:

```
foldr (+) 0 [1,2,3] ⇒ (1+(2+(3+0)))
```

- There is another function `foldl` that binds from the left:

```
foldl (+) 0 [1,2,3] ⇒ (((0+1)+2)+3)
```

- In general:

\[
foldl(\oplus)z[x_1 \cdots x_n] = (((z \oplus x_1) \oplus x_2) \oplus \cdots \oplus x_n)
\]

19 fold Functions...

- In the case of (+) and many other functions

```
foldl(\oplus)z[x_1 \cdots x_n] = foldr(\oplus)z[x_1 \cdots x_n]
```

- However, one version may be more efficient than the other.
21 Operator Sections

- We’ve already seen that it is possible to use operators to construct new functions:

 - $(\ast 2)$ – function that doubles its argument
 - (>2) – function that returns `True` for numbers > 2.

- Such partially applied operators are know as **operator sections**. There are two kinds:

 $(\text{op } a) \ b = b \ \text{op} \ a$

 $(\ast 2) \ 4 = 4 \ * \ 2 = 8$
 $(>2) \ 4 = 4 \ > \ 2 = \text{True}$
 $(++ "\n") \ "Bart" = "Bart" \ ++ \ "\n"

22 Operator Sections...
23 takeWhile & dropWhile

- We've looked at the list-breaking functions drop & take:

\[
\text{take 2 ['a','b','c']} \Rightarrow ['a','b']
\]
\[
\text{drop 2 ['a','b','c']} \Rightarrow ['c']
\]

- takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

\[
\text{takeWhile even [2,4,6,5,7,4,1]} \Rightarrow [2,4,6]
\]
\[
\text{dropWhile even [2,4,6,5,7,4,1]} \Rightarrow [5,7,4,1]
\]

24 takeWhile & dropWhile...

\[
\text{takeWhile p [] = []}
\]
\[
\text{takeWhile p (x:xs)}
\]
\[
\quad | \ p x = x : \ \text{takeWhile p xs}
\]
\[
\quad | \ otherwise = []
\]

\[
\text{dropWhile p [] = []}
\]
\[
\text{dropWhile p (x:xs)}
\]
\[
\quad | \ p x = \ \text{dropWhile p xs}
\]
\[
\quad | \ otherwise = x:xs
\]

25 takeWhile & dropWhile...

- Remove initial/final blanks from a string:

\[
\text{dropWhile ((==) ' ') " Hi!" } \Rightarrow "Hi!"
\]
\[
\text{takeWhile ((/=) ' ') "Hi! " } \Rightarrow "Hi!"
\]

26 Summary

- Higher-order functions take functions as arguments, or return a function as the result.

- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called partial application.

- Operator sections are partially applied infix operators.
27 Summary...

- The standard prelude contains many useful higher-order functions:

 \textbf{map} \; f \; xs \; \text{creates a new list by applying the function} \; f \; \text{to every element of a list} \; xs.

 \textbf{filter} \; p \; xs \; \text{creates a new list by selecting only those elements from} \; xs \; \text{that satisfy the predicate} \; p \; \text{(i.e.} \; (p \; x) \; \text{should return True).}

 \textbf{foldr} \; f \; z \; xs \; \text{reduces a list} \; xs \; \text{down to one element, by applying the binary function} \; f \; \text{to successive elements, starting from the right.}

 \textbf{scanl/scanr} \; f \; z \; xs \; \text{perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.}

28 Homework

\underline{Homework (a):}

- Define the map function using a list comprehension.

 \underline{Template:}

 \textbf{map} \; f \; x = [\; \cdots \; | \; \cdots \;]

\underline{Homework (b):}

- Use map to define a function \textbf{lengthall} \; xs which takes a list of strings \; xs \; as argument and returns a list of their lengths as result.

\underline{Examples:}

? \textbf{lengthall} \; ["Ay", \; "Caramba!"]
[2,8]

29 Homework

1. Give a accumulative recursive definition of foldl.

2. Define the minimum \; xs \; function using foldr.

3. Define a function \textbf{sumsq} \; n \; that returns the sum of the squares of the numbers \; [1 \cdots n]. Use map and foldr.

4. What does the function \textbf{mystery} \; below do?

\texttt{mystery} \; xs =
\texttt{foldr} \; (\++) \; [] \; (\texttt{map} \; \texttt{sing} \; \texttt{xs})
\texttt{sing} \; x = [x]

\underline{Examples:}

\texttt{minimum} \; [3,4,1,5,6,3] \; \Rightarrow \; 1
30 Homework...

- Define a function \(\text{zipp } f \text{ xs ys} \) that takes a function \(f \) and two lists \(\text{xs}=[x_1, \ldots, x_n] \) and \(\text{ys}=[y_1, \ldots, y_n] \) as argument, and returns the list \([f \text{ } x_1 \text{ } y_1, \ldots, f \text{ } x_n \text{ } y_n] \) as result.

 - If the lists are of unequal length, an error should be returned.

Examples:

\[
\text{zipp (+) [1,2,3] [4,5,6]} \Rightarrow [5,7,9]
\]

\[
\text{zipp (==) [1,2,3] [4,2,2]} \Rightarrow \text{[False,True,True]}
\]

\[
\text{zipp (==) [1,2,3] [4,2]} \Rightarrow \text{ERROR}
\]

31 Homework

- Define a function \(\text{filterFirst p xs} \) that removes the first element of \(\text{xs} \) that does not have the property \(p \).

 Example:

\[
\text{filterFirst even [2,4,6,5,6,8,7]} \Rightarrow [2,4,6,6,8,7]
\]

- Use \(\text{filterFirst} \) to define a function \(\text{filterLast p xs} \) that removes the last occurrence of an element of \(\text{xs} \) without the property \(p \).

 Example:

\[
\text{filterLast even [2,4,6,5,6,8,7]} \Rightarrow [2,4,6,5,6,8]
\]