Lambda Calculus

- Developed by Alonzo Church and Haskell Curry in the 1930s and 40s.
- Branch of mathematical logic. Provides a foundation for mathematics. Describes — like Turing machines — that which can be effectively computed.
- In contrast to Turing machines, lambda calculus does not care about any underlying “hardware” but rather uses simple syntactic transformation rules to define computations.
Lambda Calculus

A theory of functions where functions are manipulated in a purely syntactic way.

In lambda Calculus, everything is represented as a function.

Functional programming languages are variations on lambda calculus.

Lambda calculus is the theoretical foundation of functional programming languages.

“the smallest universal programming language”.

Sparse syntax and simple semantics — still, powerful enough to represent all computable functions.
Introductory Example
Introductory Example

Let’s look at how a **lambda expression** is evaluated.

You are not expected to understand this, yet.

The function

\[f(x, y, z) = x \times y + z \]

looks like this in lambda calculus:

\[f \equiv (\lambda x. (\lambda y. (\lambda z. \text{add} (\text{mul} x y) z))) \]
Introductory Example...

Let’s evaluate

\[f(3, 4, 5) = 3 \times 4 + 5 \]

or, in Scheme

```
> ((((lambda (x)
    (lambda (y)
      (lambda (z) (+ (* x y) z))))
    3) 4) 5)
17
```

or, in lambda calculus:

\[(((((\lambda x.(\lambda y.(\lambda z.add (mul x y) z)))) 3) 4) 5) \]
Introductory Example...

Evaluation is done by substitution. The first step is to replace x with 3:

$$(((\lambda x. (\lambda y. (\lambda z. \text{add} \ (\text{mul} \ x \ y) \ z))) \ 3) \ 4) \ 5) \Rightarrow$$

$$(((\lambda y. (\lambda z. \text{add} \ (\text{mul} \ 3 \ y) \ z)) \ 4) \ 5)$$

Next, we replace y with 4:

$$(((\lambda x. (\lambda y. (\lambda z. \text{add} \ (\text{mul} \ x \ y) \ z))) \ 3) \ 4) \ 5) \Rightarrow$$

$$(((\lambda y. (\lambda z. \text{add} \ (\text{mul} \ 3 \ y) \ z)) \ 4) \ 5) \Rightarrow$$

$$((\lambda z. \text{add} \ (\text{mul} \ 3 \ 4) \ z) \ 5)$$
Introductory Example...

Next, we multiply $3 * 4$:

\[
(((\lambda x. (\lambda y. (\lambda z. \text{add } (\text{mul } x \ y) \ z)))) \ 3) \ 4) \ 5) \Rightarrow
\]

\[
(((\lambda y. (\lambda z. \text{add } (\text{mul } 3 \ y) \ z)) \ 4) \ 5) \Rightarrow
\]

\[
((\lambda z. \text{add } (\text{mul } 3 \ 4) \ z) \ 5) \Rightarrow
\]

\[
((\lambda z. \text{add } 12 \ z) \ 5)
\]
Finally, we replace z by 5 and add:

$(((\lambda x. (\lambda y. (\lambda z. \text{add} \ (\text{mul} \ x \ y) \ z))) \ 3) \ 4) \ 5)$

$(((\lambda y. (\lambda z. \text{add} \ (\text{mul} \ 3 \ y) \ z)) \ 4) \ 5)$

$((\lambda z. \text{add} \ (\text{mul} \ 3 \ 4) \ z) \ 5)$

$((\lambda z. \text{add} \ 12 \ z) \ 5)$

$(\text{add} \ 12 \ 5)$

17
Syntax
Syntax

There are four kinds of lambda expressions:

1. **variables** (lower-case letters)
2. **predefined constants and operations** (numbers and arithmetic operators)
3. **function applications**
4. **function abstraction** (function definitions)

\[
\text{expression ::= variable | constant | (expression expression) | (\lambda \text{variable} . \text{expression})}
\]
Syntax — Function Application

In the expression

\[(E_1 \ E_2)\]

we expect \(E_1\) to evaluate to a function, either a predefined one like `add` or `mul` or one defined by ourselves, as a lambda abstraction.

For example, in

\[(\text{sqrt } 9)\]

`sqrt` represents the constant (predefined) square root function, and 9 it’s argument.
Most authors leave out parentheses whenever possible.

We will assume function application associates left-to-right.

Example:

\[f \ A \ B \]

should be interpreted as

\[((f \ A) \ B) \]

not

\[(f \ (A \ B)) \]
In
\[(\lambda x. \text{times } x \ x)\]
the \(\lambda\) introduces \(x\) as a formal parameter to the function definition.

Function application binds tighter than function definition. For example,
\[(\lambda x. A \ B)\]
should be interpreted as
\[(\lambda x. (A \ B))\]
not
\[((\lambda x. A) \ B)\]
In other words, the scope of

$$(\lambda x. \cdots)$$

does not extend as far right as possible.

For example,

$$(\lambda x. A B C')$$

means

$$(\lambda x. ((A B) C'))$$

not

$$(((\lambda x. (A B)) C')$$

or

$$(((\lambda x. A) (B C'))$$
Variables

In

\((\lambda x.E)\)

the variable \(x\) is said to be \textbf{bound} within \(E\).

This is similar to \textbf{scope} in other programming languages:

\{
 int x;
 ...
 print x
\}
In

\((\lambda x. \text{square } y) \)

the variable \(y \) is said to be free.

Similar to other programming languages, a free variable is typically bound within an outer scope, like \(y \) here:

```plaintext
{ 
    int y;
    { 
        ...
        print y
    }
}
```
Consider the expression

\[(\lambda x. (\lambda y. \text{times } x y))\]

In the inner expression

\[(\lambda y. \text{times } x y)\]

\(x\) is free, \(y\) is bound.

Variables can hold any kind of value, including functions.

We say functions are Polymorphic — they can take arguments of any type.
We can give expressions names, so we can refer to them later:

\[\text{square} \equiv (\lambda x. (\text{times} \ x \ x)) \]

\(\equiv\) means *is an abbreviation for.*
Syntax — Multiple Arguments

- A lambda abstraction can only take one argument:

\[(\lambda x.(\text{times } x x))\]

- To simulate multi-argument functions we use **currying**.

- The abstraction

\[(\lambda f.(\lambda x.f(f \ x)))\]

represents a function with two arguments, a function \(f\), and a value \(x\), and which applies \(f\) twice to \(x\).
Syntax — Multiple Arguments...

Example:

\[
(((\lambda f.(\lambda x.f(f\ x)))\ \text{sqr})\ 3) = \\
((\lambda x.\text{sqr}(\text{sqr}\ x))\ 3) = \\
\text{sqr}(\text{sqr}\ 3) = \\
(\text{sqr}\ 9) = 81
\]

In the first step, \(f \) is replaced by \(\text{sqr} \) (the squaring function).

In the second step, \(x \) is replaced by 3.
Some authors use the abbreviation

$$(\lambda x \: y \: z . E)$$

to mean

$$(\lambda x . (\lambda y . (\lambda z . E)))$$

In general, different books on lambda calculus will use slight variations in syntax.
Examples
Example — The identity function

This

$$(\lambda x . x)$$

is the identity function.

The expression

$$((\lambda x . x) \, E)$$

will return E for any lambda expression E.

For example, the expression

$$((\lambda x . x) \, (\text{sqr} \, 3))$$

will return 9.
Example — Evaluation

The expression

$$(\lambda n. \text{add} \ n \ 1)$$

is the integer successor function.

So,

$$(\lambda n. \text{add} \ n \ 1) \ 5$$

would return 6.

Both add and 1 need to be predefined constants in the language. Later we will see how they can be defined in the calculus from first principles.
Example — Parsing Expressions

Consider the expression

\[(\lambda n. \lambda f. \lambda x. f (n f x))(\lambda g, \lambda y. gy)\]

Identify the lambda expressions, which extend as far to the right as possible:

\[(\lambda n. \lambda f. \lambda x. f (n f x))(\lambda g, \lambda y. gy) = \]

\[(\lambda n. \lambda f. \lambda x. f (n f x))(\lambda g. \lambda y. gy) = \]

\[(\lambda n. \lambda f. \lambda x. f (n f x))(\lambda g. \lambda y. gy) = \]

\[
\vdots
\]
Example — Parsing Expressions...

\[
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g, \lambda y.gy) = \\
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g. \lambda y.gy) = \\
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g. \lambda y.gy) = \\
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g. \lambda y.gy) = \\
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g. \lambda y.gy) = \\
(\lambda n. \lambda f. \lambda x. f(nfx))(\lambda g. \lambda y.gy)
\]
Example — Parsing Expressions...

Next, group applications by associating them to the left:

$$(\lambda n. \lambda f. \lambda x. f(n f x))(\lambda g. \lambda y.g y)$$

Finally, insert parenthesis:

$$(((\lambda n.(\lambda f.(\lambda x.(f((n f)x)))))(\lambda g.(\lambda y.(g y))))$$
Example — Bound/Free Variables

Find the bound and free variables in the expression

\[\lambda x.y \lambda y.y \times \]

First, parenthesize:

\[(\lambda x.(y (\lambda y.(y \times)))) \]

\(x \) is bound, \(y \) is free, \(y \) is bound:

\[(\lambda x.(y (\lambda y.(y \times)))) \]
Readings and References

- Read pp. 614–615, in Scott.
Acknowledgments