
Erlang

Rebecca Bailey and Ian Ryan

Due: May-14-2008

1



1 Erlang: Dead and Loving It

Like the lowly mammal before it, Erlang is a programming language who’s time has finally come.
Created over twenty years ago in response to needs in telecommunications, the world passed it
by, a funny concurrent functional language - a dead end evolution with a small target audience.
Computing was obsessed with faster processors and object-oriented programming. Erlang persisted,
hiding away in telecommunications software, until the day it would be rediscovered, by a new
generation of programmers searching for a language uniquely suited to the demands of modern
programming.

Throughout this programming language class, we’ve seen many examples of languages are that
well suited for one task, but perform very poorly at another. Programmers need to learn multiple
languages, so that they have a good tool at hand suited for any task. Every programmer learns
an object-oriented language in his repertoire, Java or Ruby or any of a dozen others in their first
years of college. Everyone knows an imperative language like C. Most have worked in a declarative
language, such as LISP, or Prolog. Each of these programming styles has uses for which they are
best suited. They each are great to have in your toolbox for real world applications.

Erlang’s concurrency-oriented programming is a different paradigm than any other, and will have
much use in the near future. The changing parameters of the computing world today, specifically
the increasing need for web server extensibility, has created an environment that the unique traits
of Erlang can really shine.

2 History of Erlang, Part 2

The 1980’s were a heady time in computing. The PC was gaining traction in households, busi-
nesses were able to afford desktop machines for the first time, and somewhere Al Gore was creating
the internet. Hardware costs were dropping, and programming costs were rising. The Swedish
telecommunications company Ericsson needed a new programming language, to increase the pro-
ductivity of their programmers. After several years of testing diverse languages the Ericsson Com-
puter Science Lab determined that the target language must be a high level symbolic language, and
have powerful concurrency primitives, as well as robust error recovery features. The only problem
was that no current language met these requirements.

Over the course of the next several years, Ericsson developed Erlang. It is a functional language,
with powerful pattern-matching syntax. This makes it incredibly easy to program. As a declarative
language, the focus is on defining the problem to be solved, not the nuts and bolts of how to solve it.
This lets programmers rapidly prototype and develop solutions. The size of code for an application
written in Erlang is much smaller than the size of an equivalent application written in an imperative
language like C.

Erlang was released as open source in 1998. Since then it has started to gain steam as a more
common programming language. Users such as Amazon, Nortel and T-Mobile rely on Erlang to
power their systems. Applications using Erlang are as varied as email systems, electronic payment
systems and software testing tools.

2



Simply calling it Erlang is a bit of a misnomer. Properly most applications are written using the
OTP libraries, which are part of the open source release. Also featured in the open source release
is the run time environment, along with many useful tools for programming concurrently.

3 The Erlang Movie

Erlang has several features which make it uniquely capable as a language for writing massively
scalable applications, both from a sheer programming standpoint and a durability/maintainability
standpoint.

Creating concurrent processes in most languages is a difficult task; in Erlang, it is trivial. Figure
1 shows an example of spawning a new process. As can been seen, the creation of a new process
uses the spawn primitive.

Figure 1: Starting a new process

The concurrency model that Erlang em-
ploys is a great example of forward think-
ing. Other concurrent languages devel-
oped during the same time period as Er-
lang used shared state to communicate be-
tween processes. Erlang’s creators chose
to go with asynchronous message passing
instead, using the actor method. Under
the actor method, a process can do sev-
eral things on receiving a message. It can
spawn a finite number of new actors, creating new processes; it can send new messages to a finite
number of other actors; it can make decisions in its own process; or it can determine how to handle
the next message. In figure 2, the process passes the initiate message to the server node process.

There are many benefits of using a message passing system instead of shared state. One such
benefit is that Erlang does not need variable locks. Languages with shared state need to lock
variables to ensure concrruent processes do not have side effects or draw from corrupted data.
Erlang on the other hand needs no such thing. Since Erlang does not support mutable data
structures, correct programming techniques are enforced, and so processes are side-effect free. This
makes Erlang processes very easy to parallelize.

While the inability to change variables might seem completely inconvient, the benefits outweight
the cost. Processes cannot modify data, but can only consume it. As an attempt to offset the
inconvenience of this feature, the creators of Erlang included easy ways to create a copy of a
variable and make required modifications while you copy the variable.

As mentioned previously, one of the goals of the creators of Erlang was for the new language
to have robust exception-handling. This is an area that it excels in. An Erlang application is
constructed of many small, independently running processes. When a new process is spawned, it
sends a linking message to its controlling process. By doing so, this makes it easy to create a graph
of processes. This is invaluable for error recovery, as we’ll see in a moment.

3



Figure 2: Exiting a process on an error message

When a process encounters an error and
exits, the process exits cleanly, and a mes-
sage is sent to the controlling process. The
controlling process then handles the error
message, and the application can continue
running.

By using the graph of processes, its easy
for the application to trace the graph,
searchin for processes which were effected
by the error. Once found, these processes
are easy to restart or resurrect. Other pro-

cesses in the application that are independent of this error will continue running just fine.

Exception handling is one important aspect of reliability. Erlang has a second way to increase up-
time for applications. Rather uniquely, Erlang allows modules to be changed while the application
is running, without disturbing other unaffected portions of the system. This is very helpful for
handling bug fixes, so that servers aren’t down. Both the old version of a module and the new
version of a module can co-exist in an application until the codeswitch atom is invoked. When
codeswitch is called, the interpreter searches for a different version of the module, and replaces the
current version with the new. This makes it possible to upgrade software without taking down
applications or servers.

Many of the features that make Erlang good are inherited from the parent class of functional
languages. Like most functional languages, Erlang does not allow standard iteration through for or
while loops. Instead, iteration is achieved through the use of recursion. By doing so, a programmer
must break down a problem into small subproblems, simplifying complex programming goals. This
is just one of the features that lets Erlang applications be smaller than applications written in other
languages.

Figure 3: Overloading func-
tion names

As a functional language, functions are first-class citizens in Er-
lang. They can be passed as arguments to other functions, returned,
or even bound to variables. This makes writing a generic quicksort
for undetermined variable types trivially easy.

Function names can be overloaded, if the second function has
a different arity, or number of arguments, then the first function.
Erlang views the functions as completely separate, with no relation.
An example can be seen in figure 3.

Erlang is completely dynamically typed. Any value can be bound
to any variable. This isn’t to say that Erlang have no type system.
There exist a small number of primitive types: atoms, tuples, func-
tions and several others. Compound variables are created from the
tuple type. Erlang supports limited OO programming through tu-
ples, where the first field in a tuple is the name of the ”class.” Erlang does not support advanced
OO features.

4



Figure 4: Mis-
matched types

Similar to other functional languages, variable names in Erlang can be seen only
by the local function. There are no global variables allowed in Erlang. Variable
names don’t need to be declared in any way before use.

One interesting feature of Erlang’s type system is that you can use boolean
comparison between types. Figure 4 show a comparison between an integer and a
string.

Many of the applications Erlang is used for have real time run-time require-
ments. Fast responses are required. The Erlang interpreter supports an incremen-
tal garbage collection routine, so there is never a point where garbage collection
halts the response for long.

As mentioned earlier, Erlang has pattern matching syntax. Its easy to test a
variable to match expected patterns, and return the result based on the matching.

Erlang also allows matching to generic terms, like the * operator on a command prompt. This can
be seen in figure 5.

4 Erlang Stinks

Figure 5: Pattern Matching

Given all the great things about Erlang, why hasn’t it taken off
since it was created 20 years ago? What made some of its comtem-
porary languages successful, while Erlang has been a backwater
of development? Erlang has some serious flaws that keep it from
reaching common usage.

One of the downfalls of Erlang is its archaic and often inconsis-
tent syntax. Erlang is derived from LISP and Prolog, as discussed
earlier, and takes the worst syntax from each of its predecessors.
This leads to confusing syntax requirements, when viewed in com-
parison with a more modern example. For example, in Erlang an
if statement has to have a true branch. If no branch evaluates to
true, the process will throw an error message and exit. The inability to have if conditions without
bothering with an else statement only means more coding for a programmer, but it is indicative of
generally poorly thought out syntax.

The use of punctuation is also remarkably unfriendly, to a new Erlang programmer. The appli-
cation of periods, commas, semi-colons is arcane at best. Half the statements have no terminating
punctuation, further confusing the issue. Even a language as old as C has consistent statement
termination.

Like many languages, Erlang is interpreted. Modern languages like Ruby and Python have
excellent interpreters, even the old man LISP has a fairly flexible interpreter. Erlang’s, on the
other hand, doesn’t allow composition of a function in the interpreter. A function must be written
in another program, and then loaded into the interpreter. If you made a mistake, the process must
be repeated.

5



Another problem with Erlang is that it is not actually side-effect free. There are primitives in the
language that have side effects. While it is definitely possible to code side-effect free applications,
the fact that Erlang is impure in this sense is troubling.

Finally, Erlang has shared state! One of the biggest draws to Erlang is its ability to easily (and
without consequence) parallelize processes in applications because of the lack of shared state. But
Erlang actually has a module called ets, which allow large amounts of data to be stored in the
interpreter, and be accessed by multiple processes at the same time. As no data locks are provided,
this can lead to data corruption with concurrent read/writes.

5 Erlang Strikes Back1

All the above is interesting in an educational or historical sense, but what makes it relevant to
today’s programming life? What brings a 20 year old language out of the books and into modern
programming? There are certainly much more recent and trendy languages one could program in.
As mentioned previously, Erlang is really uniquely suited to many of the new areas of application
for computers in today’s society.

Figure 6: Apache vs YAWS

Twenty years ago, the driving force for
new computer hardware was speed. A
faster clock was how manufacturers sold
a new processor. There is a limit to how
fast a clock can go before it starts losing
integrity, and our chips appear to be near-
ing that limit. This has left the manufac-
turers in quite a bind over how to sell pro-
cessors. They have adapted in the last sev-
eral years, leaning on multi-core processors
more and more. Performance of an Erlang
application scales almost linearly with the
number of processors. Combined with the
rising number of processors on chips, Er-
lang is a clear candidate for becoming the
dominant concurrent language.

A second key factor that is leading to-
ward Erlang ascendancy is the scalability
of applications written in it. Creating new processes is simple and easy, with very low overhead.
There are many examples of Erlang applications outperforming more standard language applica-
tions in high demand situations. YAWS (Yet Another Web Server), written in Erlang, outperforms
other web server applications by factors of 10 on large traffic loads. The explosion of the internet in
the last ten years is great news for Erlang. Figure 6 shows a YAWS web server (in red) compared
to two variations of Apache, in terms of concurrent web sessions hosted.

1Yes, I know its not a Mel Brooks title.

6



6 Blazing Erlangs

In spite of its flaws, Erlang has a lot to offer as a programming language. Once you learn its quirky
syntax and punctuation, the pattern matching lets you write easy-to-read and terse programs. The
low overhead for spawning and maintaining new threads lets anything from a messenger service to
a real-time database be programmed in Erlang.

While its impossible to predict the future accurately (flying cars are just around the corner, I
swear), it seems likely that as concurrency in programming rises in importance and massive online
applications continue to increase in demand, so too will Erlang rise as the dominant concurrent
language.

7



References

Armstrong, Joe. ”Apache vs. YAWS.” http://www.sics.se/ joe/apachevsyaws.html

”Erlang (programming language).” Http://en.wikipedia.org/wiki/Erlang programming language

”Erlang is Icky.” http://www.kimbly.com/blog/000057.html

”ErlyWeb: The Erlang Twist on Web Frameworks.” http://erlyweb.com/

Eriksson, Klaus and Armstrong Williams. ”Programming Rules and Conventions.”
http://www.erlang.se/doc/programmingrules.shtml

”FAQ About Erlang.” http://www.erlang.org/faq/faq.html

Sadan, Yariv. ”Erlang Does Have Shared Memory.” 13 May 2008. http://yarivsblog.com/

Wegrzanowski, Tomasz. ”My First Impressions of Erlang.” http://t-a-w.blogspot.com/2006/09/my-
first-impressions-of-erlang.html

8


