
1

Objective C 2.0
Programming Language

Final Exam
C SC 520

(Principles of Programming Languages)

Report prepared by:
 Bhavin Mankad

 Karthik Ravichandra

 CS 520: Final Project Report Objective-C

2

Table of Content
 Page #
1. History 3
2. Design Objectives 3

a. Object Orientation
b. Simple Extension to C, Strict Superset of C
c. Light Weight
d. Flexibility to switch between Structural and Object Oriented

Programming
e. Dynamic Binding
f. Reflection

3. Interface and Implementation 4
4. Class and Object 5
5. Inheritance 6
6. Dynamic Behavior 7
7. Messaging 8
8. Exception Handling 9
9. Categories 9
10.Properties 10
11.Memory Management 10
12.Interesting Facts about Objective-C 12
13.Comparison with C++ 12
14.References 12

 CS 520: Final Project Report Objective-C

3
1. History

With languages like Simula and SmallTalk, the importance of Object Oriented
Programming was becoming apparent in early 1980s. Object Oriented
Programming made development and maintenance of large scale projects a
lot easier as compared to Structured Programming. Also, thinking in Object
Oriented terms was closer to real world situations. Brad Cox, working in a
company called StepStone was much interested in Software Reuse and
Object Oriented development and was greatly influenced by simplicity and
Object Oriented features of SmallTalk. In early 1980s, while working at
StepStone, he incorporated SmallTalk like Object Oriented features to C
compiler and developed a new language called Objective-C. In 1986, Cox put
much of the description of his new language in a book named ‘Object
Oriented Programming, An evolutionary approach’.

The company started by Steve Jobs, NeXT, licensed Objective-C from
StepStone and released their own version of compiler and APIs in 1988.
NeXTStep, their Object Oriented multi-tasking operating system was based
on Objective-C. OpenStep was developed by NeXT in partnership with Sun
Microsystems.

Work on GNU’s version of NeXTstep clone started in 1992 and it was given
the name ‘GNUstep’. The first compiler written by Dennis Glatting in 1992
was followed by another version written by Richard Stallman.

After NeXT was acquired by Apple, the OpenStep was used in their operating
system Mac OS-X. Apple’s one of the most important frameworks Cocoa is
developed in OpenStep interface objects. Thus Apple is the single most
influential force behind existence of Objective-C in the market place today.

2. Design Objectives

a. Object Oriented Programming
The primary design goal of Objective-C was Object Oriented
Programming. The Object Oriented syntax is much influenced by
SmallTalk.

b. Simple extension to C
The language is a strict super-set of C. Thus it is backward compatible
with C. It was designed to add Object Oriented support to C. Only those
Object Oriented concepts which were absolutely essential were added into
the language. This has made the language much simpler to learn and
program in.

 CS 520: Final Project Report Objective-C

c. Light Weight
The language does not need any run-time platform like Virtual Machine
for Java. Language Pre-processor translates this syntax into C source
code. The language just adds a SmallTalk style messaging and some
syntactical sugar for defining and working with objects in C language’s
environment. This keeps the language light weight at run time. The
language does not have additional syntactical and conceptual quirks like
virtual functions, friend functions, templates, multiple inheritance etc in
C++.

4

d. Flexibility
As Objective-C is a strict superset of C, it can support pure structural
programming as well. This gives flexibility to programmers who may want
to use structural programming like C for systems level code and OO
programming for application development.

e. Dynamic Behavior
Objective C is the most dynamic of all OO languages. It defers most of the
decisions till run time. It supports Dynamic Typing, Dynamic Binding and
Dynamic Loading. These concepts are further explained in section 6.

f. Reflection
Objective C supports reflection. It can observe and modify its structure at
runtime using the ‘Class’ object methods and also paradigms like
‘selector’. The concept is similar to Reflection APIs in Java.

3. Interface and Implementation

In Objective C, the code is organized in two types of source files. Interface
files declare a class with its instance variables and methods. Implementation
files contain the implementation of these methods. The objective behind this
separation is to achieve ‘Data Abstraction’ – an important concept in Object
Oriented Programming. Interface describes contract for the given class
stating which methods (messages) this class is responsible for responding to
and what data it holds. This hides the implementation details and exposes
only the contract to other classes which use this class. The users of this class
don’t have to worry about implementation. Thus any updates in a class
method’s implementation will not affect the user classes.

Interface

• This declares a class named Rectangle which inherits from the class
Shape

• length and width are instance variables. Instance variables are
declared within { }

• Methods are declared outside the { }
• In Method declaration, (+) means it’s a class method and (–) means it

is an instance method. First () declares return type of the method. For
example (void) or (float). Then comes the method name followed by ‘:’
incase the method has arguments. Arguments follow the ‘:’ with types
given in ()

Rectangle.h

 CS 520: Final Project Report Objective-C

@interface Rectangle : Shape
 {
 float length;
 float width;
 }
 + (void)alloc;
 -(float) setLength: (int)len andWidth: (float) width;
@end

5

Implementation

• Implementation file contains definition of methods for the Rectangle
class

• Similar to the interface, (+) shows it is a class method and (–) shows
that it is an instance method

 Rectangle.m

4. Class and Object

Class
These are the building blocks of any Object Oriented language. Objective C
defines classes in the interface header files as explained in the previous
section. For example in the previous section, Rectangle.h file defines a class
named Rectangle. Each class can have instance and class variables and
methods.

Method definitions for a class are provided in an implementation file such as
Rectangle.m shown above. Implementation file imports the header file with
the statement

#import is different from #include in that it does not import the content of
the header file again if it is already imported unlike include which does not
put such a check

Instance and Class variables
By default, the class has access to all its instances variables. No special
access specifiers like a ‘.’ or ‘ ’ is needed.
Class variables are declared as ‘static’ variables. Static variables can not be
inherited by sub-classes. These variables retain their values across multiple
objects and they can be manipulated by class level methods.

Scope of Instance Variables
Instance variables have scope of either private, public or protected. They
have exactly the same meaning as in other OO languages like Java. Private
variables can be accessed only from within the class that defines it, protected

 CS 520: Final Project Report Objective-C

#import “Rectangle.h”
@implementation Rectangle
 + alloc
 {
implementation
 }

 - (float) setLength: (int)len andWidth: (float) width
 {
 // implementation
 }
 @end

#import “Rectangle.h”

6
variables by the class it defines and its subclasses and the public variables
can be accessed by any class

Objects
Classes are instantiated as objects. This is when memory for instance
variables is allocated. Objects are declared either with dynamic or static type.
For example

id rectangle; //declares a variable called rectangle which can point to an
 //instance of any class at run time

R

Allocation and Initialization

 r

The code given above shows two important steps in instantiation of objects.
The first line declares an object of type Rectangle class. The next line
allocates memory for this object – in other words actual instantiation
happens here. We send ‘alloc’ message (a method call in other words) to
Rectangle class and it returns a pointer to an object of its type. This object is
then passed a message (message passing explained in later sections) ‘init’
which initializes the instance variables.

5. Inheritance

Another important concept of OO programming is implemented using
keyword ‘extends’ as shown in the example below.

As figure below shows, Rectangle is the class which inherits from the class
Shape. It provides convenient way of reusing code. All the public and
protected member variables and methods of Shape are now part of Rectangle
too. A class can override a method that belongs to the parent class by
providing its own implementation.

Multiple inheritance is not allowed in this language just like Java and unlike
C++. A class can only inherit from one class. NSObject is the root class of all
the classes. In other words, any class that a user defines, normally derives
from NSObject. It is a base implementation for all objects and provides
important instance variables and methods useful for all the classes that
derive from it. The most basic functionality of NSObject class is to allocate
instances and connecting instances to their classes.

NSObject defines the ‘isa’ instance variable that connects every object with
its class. When an object is allocated, its ‘isa’ is made to point to its class

 CS 520: Final Project Report Objective-C

ectangle *rectangle; //declares a variable called rectangle
 //which can point to only the
 //objects of class Rectangle or its subclasses

Rectangle *rectangle;
rectangle = [Rectangle alloc];

if (rectangle)

ectangle = [rectangle init];

7
template. This template defines the offsets of variables and methods into
memory and code section of a program respectively.

Parent *parent = [[Child alloc] init];
id obj = [[SomeClass alloc] init];

6. Dynamic Behavior

In languages like C++ and C, many decisions related to types and method
calls are taken at compile time. In Objective-C most of these decisions are
taken dynamically at runtime. This gives a lot of flexibility to programs.
There are mainly three types of dynamic behavior in Objective-C.

Dynamic typing

The class (type) of an object is decided at runtime. The compiler does not
associate an object variable with its class type statically. There are two types
of dynamic typing available. One displayed by Dynamic Polymorphism and
the other displayed by a type called ‘id’. Dynamic polymorphism allows a
variable, at runtime, to point to any object of its own type or any of its
subclass types as shown in the first line in the code below. The second line in
the code shows id type. Here obj is defined as of type ‘id’ and at runtime, it
can point to an object of any class type.

Dynamic binding

Dynamic typing facilitates binding of methods with the objects at runtime. A
variable can point to any object at run time and therefore a method is bound
to the class only at run time. As shown in example below a receiver can be of
any class type at runtime and therefore which ‘aMethod’ to invoke is decided
only at runtime.

Dynamic loading

Objective-C runtime can dynamically load classes while a program is running.
It is possible to create methods on the fly and load them to the program at
runtime. These features adds flexibility to programs. All the modules do not
have to be statically loaded at compile time. Modules can be loaded as and

Method 1 Offset
Method2 Offset
Method3 Offset

@ interface Rectangle : Shape

 //declarations here

@end

Rectangle class template

isa

 rectangle

[receiver aMethod]

 CS 520: Final Project Report Objective-C

8
when needed. Also, a developer need not have classes written by other
developers at compile time. The interface can be negotiated between
developers and classes can be loaded at runtime when needed.

7. Messaging

In Objective C’s terminology, methods belonging to classes are called
‘messages’ and ‘calling methods’ is termed as ‘passing messages’.

As shown in figure 7, we are passing ‘init’ message to a ‘rectangle’ object. In
the first case, the message is passed without any arguments. In the second
case message is passed with two arguments; Length and width. The name of
the implemented method in Rectangle class is

- (void) initWithLength: (float) len andWidth: (float) width;

Dynamic Binding of method
The messages are bound to the objects at runtime. Internally, message
passing is converted into a call to a routine named objc_msgSend (receiver,
selector,…). This routine is called at runtime with at least two arguments.
‘receiver’ is the object that is passed the message to and ‘selector’ is the
name of the message (method).

Implementation detail of message passing
When a message is sent to an object, it follows ‘isa’ field of the object to
locate the class template. Once it has the correct class template it locates the
current message in the ‘method offset table’ and finds its offset into the code
section. It then moves the program counter to that instruction and starts
executing the method.

Forwarding
Because there is no check at compile time whether an object can respond to
a message passed to it, it is runtime’s responsibility to deal with a situation
when an object is passed a message it doesn’t respond to. In such cases, the
runtime gives an object a chance to decide what to do with such a message
that it has received. It sends the object a forwardInvocation: message with
an NSInvocation object as its argument The NSInvocation object
encapsulates the original message and the arguments.

Program can implement a forwardInvocation: method to give a default
response to the message, or to avoid the error in some other way. As its
name implies; forwardInvocation: is commonly used to forward the message
to another object if the receiver object does not want to handle that
message.

 CS 520: Final Project Report Objective-C

[rectangle init] //No arguments

[rectangle initWithLength: 80 andWidth: 90]; //With two arguments

9
8. Exception Handling

Exception Handling in Objective C is very similar to C++ and Java. There are
4 compiler directives, @try, @catch, @throw, @finally, which form the crux
of exception handling in Objective-C. Code that could possibly raise an
exception is enclosed in the @try block. The @catch is used to handle the
exception generated in @try block. The @finally block is used for cleanup
immaterial of an exception being raised or not. The @throw block is used to
throw back an exception which can be caught in subsequent @catch blocks.
Since the exception handling is very similar to Java and C++, we will not
discuss this in detail in this report.

9. Categories

Categories are an easy way to add methods to a class, even to the ones to
which you don't have the source. They are a powerful feature of extending
the functionality of a class. In other words, categories can sometimes be a
good alternative to sub-classing, and can avoid sub-classing when it is done
just for the sake of extending a class with new methods. It is important to
note that, you can only add new "methods" to a class. No new instance
variables can be added to a class. The syntax for declaring a Category is:

As we see above, the declaration of a category is very similar to a class
interface declaration, except that a "Category name" is listed after the class
name. Once declared, the implementation is defined as:

Once new methods are added to a class through categories, all the sub-
classes can now access the new methods as if they were part of the
original class interface.

Categories can also be used to split the implementation of a single huge class
across many source files, and may simplify code management.

Another big advantage of Categories is that, the base class code doesn’t have
to be re-compiled at all. Since, we are only adding new methods to an

 CS 520: Final Project Report Objective-C

#import "ClassName.h"

@interface ClassName (CategoryName)

// method declarations

@end

#import "CategoryName.h"

@implementation ClassName (CategoryName)

// method definitions

@end

10

 CS 520: Final Project Report Objective-C

existing class, the only ones to be recompiled are those new methods that
we added.

10. Properties

Properties is another useful feature that was introduced as part of Objective-
C 2.0. As we have seen earlier, the standard way of accessing class variable
is through messages. Properties provide a concise means of accessing class
variables. Properties can be accessed using the dot-syntax. There are 2 parts
to using Properties - Declaration and Implementation.

Properties are declared with the help of the @property compiler directive.

The property implementation uses the @synthesize and @dynamic directives
to tell the compiler how to handle the actions associated with a property.

With @synthesize, the compiler will generate the setter and getter methods
for the property. With @dynamic, the programmer will have to supply the
getter and setter methods with the help of getter= and setter= attributes.

Properties also allow the programmer to associate readwrite and readonly
attributes with a class variable. Below is an example, which illustrates the
use of Properties in Objective-C.

@interface Square : NSObject{

 @property(readwrite) int size;

}

@implementation Square : NSObject

 @synthesize size;
}

The above piece of code, declares "size" as a property, and directs the
compiler to generate the getter and setter methods automatically. Further,
the size variable can now be accessed as

Square*sq = [[Square alloc] init];
sq.size = 10; // This is the equivalent of saying [sq setSize: 10]

11. Memory Management

Objective-C provides two options for memory management. Until the 2.0
version, the memory had to be managed manually by the programmer.
Objective-C has compiler directives like "release", "retain", "autorelease" that
we will discuss below, to help the programmer manage memory. With
Objective-C 2.0, the concept of a garbage collector was introduced, which
automates the task of memory management. Garbage Collection uses the
concept of Generation-based collection.

11

 CS 520: Final Project Report Objective-C

Objective-C uses a reference counting mechanism to keep track of the
liveness of an object. This count is called the retainCount. When an object is
allocated, using the alloc method, the retainCount is set to 1. A release
method is used to decrement the retainCount by 1. When the retainCount
reaches 0, the object is dealloced. If the object is referenced in the program,
the programmer can indicate this to the compiler using the retain message.
The retain message will increment the retainCount by 1.

Consider the example below:

 Rectange *rect = [[Rectangle alloc] init]; // retainCount is 1.

 Rectangle *tmprect = rect; // Now there is another reference to rect.

 [rect retain] // So we increment the retainCount

 [rect release]

 [tmprect release] // the retainCount is now 0 and dealloc is called.

The retainCount of an object can be obtained by passing it a "retainCount"
message.
The autorelease message is similar to release, except that it defers the
release of the object to a later point in time. autorelease is generally used in
conjunction with Autorelease Pools. These pools contain other objects that
have received an "autorelease" message. Thus sending an autorelease to an
object instead of a release extends the lifetime of the object till the Pool itself
is released. An autorelease pool is created as an instance of a
NSAutoreleasePool Object. Consider the example below:

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 Rectangle *rect;
 for (i=0;i <10; ++i){
 rect = [[Rectangle alloc] init];
 [rect autorelease];
 }
 [pool release];

In the above example, the 10 instances of Rectangle are released only when
the pool is released.
One of the biggest disadvantages of reference counting mechanism is the
problem of reference cycles. Consider the example below

[[tmpA setNext] tmpB] // tmpA->next = tmpB
[tmpB retain] // increment number of references to B.

[[tmpB setNext] tmpA] // tmpB->next = tmpA
[tmpA retain] // increment number of references to A.

Object tmpA has a reference to tmpB, and vice-versa. Hence the retainCount
on both these objects is 1. However, neither of these objects can be reached

12
from the root set. So, ideally these objects must be released. But the
reference counting mechanism fails to address this scenario.

12. Interesting Facts about Objective-C

• Interest in Objective-C is still very much alive due to Apple’s endorsement

of the language.
• Games like NuclearAttack and Quake are developed in Objective-C.
• Today there are four major Objective-C compilers: Stepstone, GNU, Apple

and Portable Object Compiler (POC).
o Stepstone and POC are preprocessors that that generate C code

which is then compiled.
o GNU and Apple act like compilers by creating intermediate code for

the GNU code generator directly from the source.
• An Objective-C class allows a method and a variable with the exact same

name.
• The language also allows same name for a class and an instance method.

13. Comparison with C++

14. References

a. The Objective-C Programming Language 2.0. Cocoa framework from Apple

Inc.
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Ob
jC.pdf

b. Memory Management Guide for Objective-C. Cocoa Guide
http://developer.apple.com/documentation/Cocoa/Conceptual/MemoryMgmt/
MemoryMgmt.pdf

c. Beginner’s Guide to Objective-C
http://www.otierney.net/objective-c.html

d. Objective-C Wikipedia Article
http://en.wikipedia.org/wiki/Objective-C

 CS 520: Final Project Report Objective-C

Features Objective C C++
Binding Dynamic Static
Modifying a Class Subclassing and Categories Only Subclassing
Operator Overloading No Yes
Templates Not Needed because of Dynamic

Binding
Yes

Namespace No Yes
Inheritance Single Multiple
Language Complexity Only a few syntactical additions to C Lot of additions to C like

virtual and friend functions,
templates etc.

Reflection In-built support for reflection No in-built support
Typing Dynamic Static
Influenced By SmallTalk and C Simula and C
Compiler Pre-processed or Compiled Compiled

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.pdf
http://developer.apple.com/documentation/Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.pdf
http://www.otierney.net/objective-c.html
http://en.wikipedia.org/wiki/Objective-C

